ANTARES en temps réel Taux de comptage en 3 Modules Optiques

ANTARES : Premières données de une ligne du détecteur au fond de la mer

John CARR (Centre de Physique des Particules de Marseille)

LPSC Grenoble 3 novembre 2005

Projet ANTARES

Astronomie Neutrino Recherche de la Matière Noire

et recherche interdisciplinaire dans l'océanographie, la géologie et la biologie

♦ 1996-2002 Exploration du site et R&D 1999/2000 Opération de la « Ligne Démonstrateur »

 2001-2007 Construction d'un détecteur de 12 ligne 2001/2002 Déploiement du câble et boite de jonction 2003 Opération des lignes « PSL » et « MIL » 2005 Opération des lignes « MILOM » et « Line 0 » 2006 Opération des lignes « Line 1 », « Line 2 », « Line 3,4 » 2007 Complétion du détecteur 12 lignes

→ 2007-2012... Opération pour la science

Astronomie Multi-Messager

Lumière visible

Rayons Gamma

Neutrinos

Recherche pour la Matière Noire

Énergie Sombre

Matière Noire

Matière usuelle : ions, atomes

Univers Transparent aux Neutrinos

Neutrinos sont produits dans les interactions des rayons cosmiques avec la matière

$$p/A + p/\gamma \rightarrow \pi^{0} + \pi^{\pm} + \dots$$

$$\downarrow \qquad \downarrow \qquad \downarrow$$

$$\gamma \gamma \qquad \lor_{\mu} \mu$$

$$\downarrow \qquad \downarrow$$

$$\forall \mu \forall \nu \in e$$

Technique de Détection des Neutrinos

© Colours of Provence

Projets de Télescopes à Neutrinos

ANTARES La-Seyne-sur-Mer, France (NEMO Catania, Italie)

BAIKAL: Lac Baïkal, Siberie

NESTOR : Pylos, Grèce

DUMAND, Hawaii (annulé 1995)

AMANDA, Pôle Sud, Antarctique

UE 6^{ieme} PCRD "Design Study"

2006-2009....

6'W 4'W 2'W 0'E 2'E 4'E 6'E 10'E 12'E 14'E 16'E 18'E 20'E 22'E 24'E 26'E 28'E 30'E 32'E 34'E 36'E 38'E 40'E

CPPM, Marseille DSM/DAPNIA/CEA, Saclay C.O.M. Marseille IFREMER, Toulon/Brest LAM, Marseille IReS, Strasbourg Univ. de H.-A., Mulhouse ISITV, Toulon LOV Villefranche

Collaboration ANTARES 200 Chercheurs/Ingénieurs

Université Bari Université Bologna Université/LNS Catania Université Pisa Université Rome Université Genova

Université Erlangen

NIKHEF, Amsterdam

ITEP, Moscow

Architecture d'Acquisition des Données

Performances Anticipées

Effective area

Number of events

Performances Anticipées

Angular resolution

Energy resolution

 $\Delta E(v)/E \approx 3$ for E > 10 TeV

 $\Delta \theta(v) \approx 0.2^{\circ}$ for E > 10 TeV

Surface Effective Neutrino AMANDA / ANTARES

Ciel observable par des Télescopes à Neutrino

AMANDA (South Pole)

ANTARES (43° North)

Taux d'Événements pour des Sources Galactiques

Source	Distance	Ε _ν	N _{vµ}	Ref.
ТуреА	(kpc)	(GeV)	(km ⁻² yr ⁻¹)	
Supernovae	10	<~ 10 ³	~100	Waxman & Loeb 2001
Shocks		$\sim 10^2 - 10^6$	50 - 1000	Protheroe et al. 1998
pulsars		$\sim 10^{5} - 10^{8}$	$\sim 100 - 1000$	Beall & Bednarek 2002
		$\sim 10 - 10^8$	<~ 1000	Nagataki 2004
Plerions	0.5 – 4.4	$< 10^3 - 10^5$	~ 1 - 12	Guetta & Amatto 2003
		$\sim 10^3 - 5 \cdot 10^5$	<~ <u>1</u>	Bednarek 2003
Crab	2	$\sim 10^3 - 5 \cdot 10^5$	a few	Bednarek & Protheroe 1997
		$\sim 10^3 - 5 \cdot 10^5$	~ 1	Bednarek 2003
		10-10 ⁶	~ 4 - 14	Amato et al. 2003
Shell SNRs				
SNR RX J1713.7	6	<~ <u>10</u> ⁴	~ 40	Alvarez-Muñiz & Halzen 2002
Sgr A East	8	<i>~</i> 10 ⁵	~ 140	
Pulsars +				
Clouds	8	$10^{4} - 10^{7}$	~ 2 - 30	Bednarek 2002
Galactic Centre	1.7	>~ 10 ³	a few	Torres et al. 2004
Cygnus OB2		$10^4 - 10^7$	~ 0.5	Bednarek 2003
		$< 10^{6}$	~ <mark>4</mark> ;	Anchordoqui et al. 2003
Binary systems				
A0535+26	2.6	$3 \cdot 10^2 - 10^3$	a few	Anchordoqui et al. 2003
Microquasars	1 - 10	10 ³ – 10 ⁵	1 – 300	Distefano et al. 2002

(W. Bednarek, F. Burgio, T.Montaruli astro-ph/0404534)

HESS Sources Galactique Rayons Gamma

15 new TeV sources + 3 known

Galactic Longitude (°)

Spectra measured for all sources relatively hard $<\gamma> = -2.3$

Harder \Rightarrow more events in neutrino telescopes

Puissant Restes de Supernova HESS

RX J1713.7-3946

~1 events / year / source in ANTARES if v ≈ γ Observation of neutrinos would give clear proof for hadronic acceleration and so of source of cosmic rays

Limites sur des sources pointues

Comparaison : ANTARES et Détection Direct

Using example of mSUGRA model $A_0=0, \mu>0, \tan\beta=10,$ $M_{1/2}=0-800 \text{ GeV},$ $M_0=0-1000 \text{ GeV}$ $+ \Omega_{\text{wimp}}h^2 < 1$ + LEP constraint

v flux from sun Direct Detection spin-independent cross-section

Neutrino

telescope

Neutrino Telescopes very competitive for some regions of MSSM phase space

Étapes du projet

Explorations du Site

1) Optical background study:

2) Biofouling-sedimentation study:

3) Optical properties study:

15 deployments4 deployments28 deployments

Biofouling et Bruit de Fond Optique

Short bursts (bioluminescence) over a continuous background (⁴⁰K).

~5% of time a PMT is unusable

« Ligne Démonstrateur » 1999/2000

- Data sent to shore
- First Test of acoustic positioning system: relative accuracy ~5 cm
- Atmospheric muon zenith distribution

350 m 7 PMTs

_(

 $|\bullet||0$

0

 \bullet \cap

••••

15 m

Boite de Jonction et Câble 2001/2002

Nov 01: 45 km main Electro Optical Cable deployment

In stable operation for 3 yrs

Images sous-marin des éléments détecteur

Données du « Prototype Sector Line » 2003

Données du « Prototype Sector Line » 2003

Correlation of bioluminescence with sea current

MILOM : mars 2005

Line0 : mars 2005

Mechanical test :

electro-optical transmission and water-tightness

Déploiement Line0 : 16 Mars 2005

MILOM Déploiement : 18 Mars 2005

Line0 / MILOM Connexion avec ROV Victor

Connections avril 2005

MILOM Taux de Comptage

Run 13686 MILOM (SumSlice,arsth=0.5pe,MinimumBias)

MILOM : Taux de Comptage « baseline »

MILOM : Performance des électroniques

Front-end electronics chip « ARS » reads out in two modes: Waveform – 128 samples at 640 MHz SPE (single photo electron) – time over threshold plus integral charge

Système de Référence en temps : « Clock »

LED interne du Module Optique

Optical module timing stable to < 1ns in sea during 6 months operation

MILOM : Mesure de la résolution en temps

Time in OMs relative to reference PMT in OB

Système de Positionnement Acoustique

Séismographe

Installed by VICTOR

In place in sediment

Seisometer made by GURALP

Enregistrements du Tremblements de la Terre

Italy 18 april 2005, M~4.5, d~400 km

Conclusion

12 lignes de modules optiques + 1 ligne d'instrumentation complet 2007, opération ≥ 5 ans

Fin de Présentation