L'expérience OPERA et le projet de super faisceau de neutrinos SPL-Fréjus

Antoine Cazes

Università di Padova

L'expé<mark>rience</mark> OPER<mark>A</mark>

Les oscillations de neutrinos

On trouve expérimentalement que : $\Delta m_{12}^2 \ll \Delta m_{23}^2$ et $\theta_{13} \ll 1$ Découplage possible. Oscillation à deux saveurs. Neutrino solaire
 Neutrino
 atmosphérique

Les neutrinos solaires

KamLAND: Détecte les anti-neutrinos des centrales nucléaires dans 1kt de scintillateur liquide.

SNO : 1kt d'eau lourde

 Intéraction courants neutres $v_x + d \rightarrow p + n + v_x$ Intéraction courants chargés $v_e + d \rightarrow p + p + e^-$ Intéraction quasi élastique $v_x + e^- \rightarrow v_x + e^-$

SK,

Les neutrinos solaires

L'effet MSW dans le soleil permet de déterminer que $\Delta m_{12}^2 > 0$

 $\Delta m_{12}^2 = 8, 2.10^{-5} eV^2$; $\theta_{12} = 32^{\circ}$

Antoine Cazes

LPSC - 24 mars 2005

Neutrinos atmosphériques

$$\Delta m_{23}^2 = 2,4.10^{-3} eV^2$$
; $\theta_{23} = 45^\circ$

LPSC - 24 mars 2005

Les derniers paramètres inconnus

Le dernier angle θ_{13} n'est toujours pas mesuré, de même que la phase de violation de CP δ_{CP}

CHOOZ + v solaire + KamLand

Quelque questions...

• Quel est la valeur de ∆m²₂₃ à 10% près?

MINOS

• En quoi oscille le v_{μ} pour Δm_{23}^2 ?

• Quelle est la valeur de θ_{13} ? • Y a-t-il de la violation de CP dans le domaine leptonique?

SPL–Fréjus

> $\Delta m_{23}^2 \approx 2, 5.10^{-3} \text{eV}^2$ > L=732 km

Maximum d'oscillation : $E_v=1,5 \text{ GeV}$

LPSC - 24 mars 2005

Le faisceau CNGS Le détecteur OPERA La reconstruction des événements dans les détecteurs électroniques Résultats escomptés

La fabrication d'un faisceau de neutrinos

CNGS : protons de 400GeV sur une cible de Carbone

S. Van der Meer, 1961 LPSC – 24 mars 2005

Les pions et les kaons d'un signe sont focalisés à l'aide d'une «corne»

CERN NEUTRINOS TO GRAN SASSO Underground structures at CERN Access shaft PGCN SPS/ECA4 Excavated 55m **TI8** Concreted Decay tube (2nd contract) SPS tunnel TT41 Access galleries LHC/TI8 tunnel 400GeV Target Service gallery chamber 4,8.10¹³p/extraction LEP/LHC tunnel 4,5.10¹⁹pot/an 140m pions kaons pions Des kaons • Cible segmentée: 992m •3 longueurs d'interaction Cible CORNE 1 CORNE 2 (réflecteur) •graphite Tube à vide (tunnel de désintégration) Hadron stop and first muon detector •10x11cm Connection gallery to TI8/LHC $\cdot R = 3 mm$ FE. FE. FE SE. PS PS PS PS PS PS PS. PS. Second muon detector 50mm T_{FT} = 3.5 s to Gran Sasse $T_c = 6 s$ $T_{ee} = 27.6 \text{ s}$

Focalisation des particules

I N F N

stituto Nazional di Fisica Nuclean

LPSC - 24 mars 2005

- Conducteurs internes.Corne
 - Taillé dans la masse.
 - De 1,8mm à 6,4mm d'épaisseur

Réflecteur

2mm d'épaisseur

Le flux de neutrino au Gran Sasso

• 96% ν_{μ} +3,5% $\overline{\nu_{\mu}}$ +0.5% ν_{e} • <E_v>=17GeV • Optimisé pour la détection de ν_{τ}

LPSC – 24 mars 2005

Laboratoire Nationnal du Gran Sasso

Teramo

CERN

100m

Le faisceau CNGS Le détecteur OPERA La reconstruction des événements dans les détecteurs électroniques Résultats escomptés

OPERA

LPSC - 24 mars 2005

Antoine Cazes

INFN Istituto Nazio di Fisica Nucle

Les événements dans OPERA

50×50µm²

Scanning automatique
Vitesse de scanning :
20cm²/h : reconstruction 3D
Résolution: 2μm
16 images à différentes
profondeur pour une couche d'émulsion

700

Length (cm)

800

n

Opera Read Out Chip

stituto Naziona li Fisica Nuclean

- 32 canaux de lecture + 1 canal pour soustraire le bruit de fond.
- Correction des gains $2^6=64$ niveaux de 0 à 3,55
- Auto déclenchement.
- Efficacité de 100% pour 1/3 de photo-electron (~50 fC)
- Sortie multiplexé

LPSC – 24 mars 2005

9 décembre 2004

1

支配

Le faisceau CNGS Le détecteur OPERA La reconstruction des événements dans les détecteurs électroniques Résultats escomptés

Reconstruction des traces

Les segments sont reconstruits dans les sous détecteurs, puis connectés pour former une trace. Les deux plus longues traces des deux projections sont regroupées en une trace à trois dimensions Un filtre de Kalman permet de reconstruire la position, la pente, et l'impulsion à la sortie de la brique.

Utilisé pour localiser la brique: Efficacité entre 50% et 80%

Identification des muons

Longueur de la trace :

Critère d'isolation :

I N F N

Association avec les trace de la brique

Angle entre la trace reconstruite dans les détecteurs électroniques et dans la brique

- P_{elec}, est mesurée à partir du nombre de murs traversés.
 - P_{brique} est mesurée à l'aide par la méthode des diffusions multiples

LPSC - 24 mars 2005

5 traces en moyenne dans les briques

Analyse par les détecteurs électroniques

LPSC - 24 mars 2005

Pourcentage

Les événements charmés

Le faisceau CNGS Le détecteur OPERA La reconstruction des événements dans les détecteurs électroniques Résultats escomptés

5an	s, faisceau nomina	al. signal		Bruit
	∆m²=1,9.10 ⁻³	∆m² =2,4.10 ⁻³	∆m²=3.10 ⁻³	de Fond
	6,6	10,4 $\begin{cases} \tau \rightarrow \mu : 3,6\\ \tau \rightarrow h : 3,1\\ \tau \rightarrow e : 3,7 \end{cases}$	16,3	0,7 $-$ Charme: 0,4 Diffusion μ : 0,1 Diffusion h : 0,2

Réduction du bruit de fond charmé: identification des muons dans la dernière briques s'il s'arrêtent dans les cible. Objectif -50% (test à KEK)

Le projet de super faisceau de neutrinos SPL-Fréjus

La quête de *θ*₁₃
 Le projet SPL-Fréjus
 Optimisation de la ligne de faisceau

Consigné dans hep-ex/0411062, soumis à EPJC.

• Expérience d'apparition de v_e • Donne accès à θ_{13} et à δ_{CP} .

$$\mathcal{P}_{\nu_{\mu} \to \nu_{s}}^{mat} = \begin{array}{l} 4c_{13}^{2}s_{13}^{2}s_{23}^{2}\sin^{2}\Delta_{31} & \text{Terme en }\theta_{13} \\ +8c_{13}^{2}s_{12}s_{13}s_{23}(c_{12}c_{23}c_{\delta}-s_{12}s_{13}s_{23})\cos\Delta_{23}\sin\Delta_{31}\sin\Delta_{12} & \text{CP pair} \\ -8J\sin\Delta_{23}\sin\Delta_{31}\sin\Delta_{12} & \text{CP impair} \\ +4s_{12}^{2}c_{13}^{2}(c_{12}^{2}c_{23}^{2}+s_{12}^{2}s_{23}^{2}s_{13}^{2}-2c_{12}c_{23}s_{12}s_{23}s_{13}c_{\delta})\sin^{2}\Delta_{12} & \text{Terme solair} \\ -8c_{13}^{2}s_{13}^{2}s_{23}^{2}\cos\Delta_{23}\sin\Delta_{31}\frac{V_{C}L}{2}(1-2s_{13}^{2}) & \text{Effet de matière} \end{array}$$

$$P(v_{\mu} \rightarrow v_{e}) = A^{2} + S^{2} - 2AS \sin \delta$$

$$P(\overline{v}_{\mu} \rightarrow \overline{v}_{e}) = A^{2} + S^{2} + 2AS \sin \delta$$

$$A_{CP} = \frac{2AS \sin \delta}{A^{2} + S^{2}}$$

$$A \approx \sqrt{2} \theta_{13}$$

$$S \approx 0,025 \text{ (LMA)}$$
Amplitude faible, mais asymétrie grande!!!

• Bruit de fond : les neutrinos électroniques du faisceau: μ^{\pm} , $K^0 \rightarrow$ neutrino électroniques

La quête de θ_{13} puis de δ_{CP}

année		$Sin^2 2\theta_{13}$
2005	→2010	10-1
	– K2K, OPERA/ICARUS, MINOS	
2010	2009-2015	10-2
	 T2K, NOvA, Double CHOOZ, 	
2020	2015-2025	10-3
	 Super faisceau et/ou faisceau bêta 	
2025	■ 2025	10-5
	– Usines à neutrinos	
LPSC – 24 mars 2	2005 Antoine Cazes	I N

lstituto Nazionale di Fisica Nucleare

Le projet de super faisceau de neutrinos SPL-Fréjus

La quête de \(\theta_{13}\)
Le projet SPL-Fréjus
Optimisation de la ligne de faisceau

Faisceau de protons :

- filiforme
- E_k=2.2GeV, 3.5GeV,
 4.5GeV, 6.5GeV et 8GeV
- 1,1.10¹⁶pot/s@2,2GeV
- Normalisé à 4MW.
- Cible :
 - Cylindre de 30cm de long,
 Ø15mm.
 - Mercure liquide : Z=80
 - 1MW déposé!!!
 - FLUKA 2002.4 et MARS

Nazionale Nucleare

La cible en mercure liquide.

Test à BNL E-951

0,75ms

Faisceau de protons :

- 2,7 10¹²p/bunch
- t₀≈0,45ms

Jet de mercure :

- Ø12mm.
- Vitesse 2,5m/s

LPSC – 24 mars 2005

4,5ms

13ms

K.Mc Donald, H. Kirk, A. Fabich

2 cornes
concentriques
300kA et 600kA
Épaisseur des
conducteurs : 3mm

• Impulsion transverse des pions.

• Les particules sortent un grand angle: • $<\theta_{\pi}> = 60^{\circ}@2,2GeV$ • $<\theta_{\pi}> = 55^{\circ}@3,5GeV$ • La corne doit entourer la cible.

Dépôt d'énergie dans la corne

Solution en cours d'investigation : réduire l'épaisseur d'aluminium (3mm Al) + des renforts.

LPSC - 24 mars 2005

Optimisation de la forme des cornes

2 optimisations ont été étudiées : • $E_v \sim 260 \text{MeV}$ • $E_v \sim 350 \text{MeV}$ ($p_{\pi} = 600 \text{MeV/c}$) ($p_{\pi} = 800 \text{MeV/c}$) Maximum d'oscillation

INFN INFN Istituto Nazionale di Fisica Nucleare

Le calcul du flux de neutrinos

Faible énergie faible poussée de Lorentz faible focalisation! La simulation requiert un grand nombre d'événements $(\sim 10^{15} evts!!!)$

Quand un π, un μ ou un K se désintègre, la probabilité que le neutrino atteigne le détecteur est calculée

- Cette probabilité est utilisée comme poids dans le calcul du flux de neutrinos au Fréjus.
- 10⁶evts: plus raisonnable!

Antoine Cazes

INFN Istituto Nazionali di Fisica Nuclear

Calcul de la sensibilité à θ_{13} et δ_{CP}

Détecteur de type UNO:

- Cerenkov à eau (analyse à la Super Kamiokande)
- 440 kt
- A proximité du tunnel du Fréjus (130 km du CERN)

Même durée

- Conditions de fonctionnement possibles:
 - -5 ans π^+
 - $-1 \text{ an } \pi^+ + 4 \text{ ans } \pi^- \neq$
 - $-2 \operatorname{ans} \pi^+ + 8 \operatorname{ans} \pi^-$

Les autres paramètres sont:

- $\Delta m_{23} = 2.5 \ 10^{-3} eV^2$ $\sin^2 2\theta_{23} = 1.0^{-3}$
- $\Delta m_{12} = 7.1 \ 10^{-5} eV^2 \cdot sin^2 2\theta_{12} = 0.82$

Section efficace vCC sur H_20

Même statistique

Le projet de super faisceau de neutrinos SPL-Fréjus

 La quête de θ₁₃
 Le projet SPL-Fréjus
 Optimisation de la ligne de faisceau

Optimisation du tunnel de désintégration

Les particules vont se propager sur quelques dizaines de mètres dans un tunnel où le vide existe.
Le tunnel débute juste après la corne.

- La longueur du tunnel modifie la pureté du faisceau.
- Test :L=10m, 20m, 40m et 60m.
 - 10m→40m
 - v_µ, v_µ+ 50% à 70%
 - v_e , v_e + 50% à 100%
 - 40m→60m

 $\succ v_{\mu}$, $\overline{v_{\mu}}$ + 5%

- $\succ v_{e}$, $\overline{v_{e}}$ + 20%
- 40m à l'air meilleur

Le rayon du tunnel modifie l'acceptance

Test: R=1m, 1.5m et 2m

- − 1m →2m (L=40)
 - $\succ v_{\mu}, \overline{v_{\mu}}$ +50%
 - $\succ v_e$, v_e +50% à 70%
- 2m à l'air meilleur

Ces résultats vont être vérifiés lors du calcul de la sensibilité à θ_{13} et à δ_{CP}

tunnel : long. 40m $E_p = 4.5 \text{GeV}$ rayon 2m $E_v = 350 \text{MeV}$ LPSC - 24 mars 2005Antoine Cazes

 $sin^2 2\theta_{13} > 7,1 10^{-4}$

10 ans de focalisation mixte

Comparaison de l'énergie

Comparaison des cornes

 $\sin^2 2\theta_{13} > 2,02 \ 10^{-3}$

90%CL

tunnel : long. 40m $E_p = 3.5 \text{GeV}$ rayon 2m $E_v = 350 \text{MeV}$

LPSC - 24 mars 2005

Conclusion

5ans focalisation mixte 10ans focalisation mixte 5ans focalisation positive

hep-ex/0411062, soumis à EPJC.

Pour le scénario de 10 ans de focalisation mixte, on obtient une sensibilité autours de θ₁₃~1°

 On constate une complémentarité avec les faisceaux bêta (δ_{CP}>0)

Le domaine des neutrinos solaires est maintenant bien connu Le domaine des neutrinos atmosphériques occupe le futur proche OPERA est en cours de construction Démarrage à l'automne 2006 Le futur va explorer les derniers paramètres : θ_{13} et δ_{CP} Un facteur 4 a été gagné en sensibilité pour le projet SPL-Fréjus Il peut atteindre la sensibilité de sin²2 θ_{13} > 2,02 10⁻³

