

Recherche de matière noire avec l'expérience EDELWEISS

J. Gascon UCB Lyon, CNRS/IN2P3/IPNL

7 mars 2006

Matière Noire sous forme de WIMP

- Echelle cosmologique (WMAP, Archeops, SNIIa, ...)
 Ω_{Cold Dark Matter} ~0.22, Ω_{Baryon} <0.05
 Formation de structures → Particules massives
- $\sigma_{annihilation} \sim Weak \text{ force} \rightarrow WIMPs$

Echelle galactique Courbes de rotations:

 ρ_{CDM} local = 0.2-0.4 GeV/cm³

- Pour MWIMP ~100 GeV/c²
 - → ~3000 WIMPs/m³ ici présents,
 - → v~200 km/s:
 - \rightarrow flux local ~ 10⁵ WIMP/cm²/s

Recherche directe

- WIMP scattering on nucleus in the laboratory (local ρ_{CDM})
- Kinetic energy of recoil ~ 20 keV (for M_{WIMP} ~ M_{RECOIL}~ 100 GeV and v_{WIMP} ~ 200 km/s)
 Direction of recoil? Difficult

Recoil travels ~ 20 nm in solid, ~ 30 μ m in 1 atm gaz

Calorimetric approach -> Measure kinetic energy of recoil

Rates depend on:

- WIMP density (~ 0.3 GeV/cm³)
- WIMP velocity distribution (~200 km/s +/- model)

-> Use Lewin & Smith prescriptions for comparing expt. sensitivities

- WIMP scattering cross-section on nucleus
 - Depends on exact nature of WIMP

Large model dependence !

• Requires model: ex: in mSUGRA,

from 1 event/kg/week ...

... down to 1 event/ton/year

Prédictions MSSM

- Scans, or selected benchmarks
- Coherent interactions usually dominate (σ_p~σ_n, σ_{NUCLEUS} ~ μ²A²)
- Large variation of predicted rates
- Interesting range is factor 10² - 10⁴ below existing expt. limits

Prédictions MSSM et expériences

Major problem! Typical radioactivity...

(ex.: human body ~ 10^{+7} decays/kg/day)

... well above ~ 10^{-4} event/kg/day ultimate goal!

Extremely large reduction required

-> tails of distributions, difficult to understand and simulate accurately.

 20 keV ~ atomic X-ray (to compare with ~MeV signal in large v detectors)

-> relatively un-charted background domain for rare event searches

• Aim for *background-free* expts (rejection, not subtraction)

- 1. Recoil energy spectrum
- 2. Nuclear (and not electron) recoils
- 3. Coherence: $\mu^2 A^2$ dependence
- 4. Absence of multiple interactions
- 5. Uniform rate throughout entire volume
- 6. Annual modulation (... requires $> ~10^4$ evts!)

... Cryogenic detector arrays designed to fully exploit all of these

- 1. Recoil energy spectrum **←** Energy resolution
- 2. Nuclear (and not electron) recoil **Discrimination**
- 3. Coherence: $\mu^2 A^2$ dependence More than one A
- 5. Uniform rate throughout entire folumarge array
- 6. Annual modulation (... requires $> ~10^4$ type

... Cryogenic detector arrays designed to fully exploit all of these

7 mars 2006

Détecteurs Cryogéniques

- Idea: Combine thermal (or phonon) measurement with ionization or scintillation measurement
 - Thermal/phonon component: most accurate *total energy* measurement
 - Ionization or scintillation yield (norm. to thermal/phonon) differs for
 - nuclear recoil (signal)
 - electron recoils (dominant background)
 - -> powerful rejection

La collaboration EDELWEISS

- CEA Saclay DAPNIA DRECAM
- CNRS IN2P3/CSNSM Orsay IN2P3/IPN Lyon DSM/CRTBT Grenoble INSU/IAP
- FZK/Univ. Karlsruhe (Allemagne)
- DUBNA (Russie)
- Laboratoire Souterrain de Modane
 - Sous 1700 m de roche (tunnel du Fréjus)
 - Flux de rayon cosmique réduit d'un facteur 10⁶ (4 µ/m²/d)

* Expérience pour Detecter Les WIMPs En SIte Souterrain

Détecteurs EDELWEISS GeNTD

- Different charge/heat ratio for nuclear and electron recoils
- Evt-by-evt discrimination of electron recoils (main background: γ)

EDELWEISS-I

Runs EDELWEISS-I

Prises de données: 2000-2003

- Temps considérable consacré à l'étalonnage: énergie, bande de reculs nucléaires, rejet gamma, zone fiducielle, seuil en énergie
- Dernier run (2003): 22 kg.d fid.
 - Déclenchement sur signal chaleur (plus lent, mais • plus efficace à basse énergie: 50 % à 11 keV)
 - Excellente stabilité • sur 4 mois
- Exposition totale:
 - 62 kg.d (fiduciel)
 - Efficacité • @ 15 keV = 50%

- Dans 62 kg.j (fid.), 40 candidats dans la bande de recul nucléaires
 > 15 keV, dont 3 avec 30 < E_R< 100 keV
- Une coïncidence n-n observée: fond neutron?

Événements en surface EDELWEISS-I

Etude des fonds

- Fond gamma
 - 1.5 evt/kg/j/keV avant rejet
 - Compatible avec mesure U/Th des blindages de Cu (pas utilisés dans EDW-II !).

Fond neutron

- Simulation du transport du flux issu de la roche à travers les blindage (MC vérifié sur calibration neutrons)
- ~2 reculs attendus en 62 kg.j, dont ~10% en coïncidence (compatible avec 1 coïnc. observée)

Fonds de surface

- α 's from ²¹⁰Po (E α =5.3 MeV)
 - Q=0.3 $\rightarrow \alpha$ decays near surfaces
 - Rate ~ 400 /m²/d
 - As expected, non-fiducial part more exposed
- ²¹⁰Pb on Cu covers or Ge surfaces
 - Should see Pb recoils and β's

- No ²⁰⁶Pb recoil peak at 100 keV observed as heat-only events: ²¹⁰Pb implanted in Cu, not Ge.
- Rate of 0.3<Q<1.0 events at low energy consistent with expected surface β's
- does not exclude contribution from ¹⁴C
- By removing Cu between detectors, these events should disappear, or ID by coincidences

Conclusions EDELWEISS-I

EDELWEISS 1 kg (3x320 g) complété en 2003

- Expérience la plus sensible en 2001-2003: <0.2 reculs/kg/jour
- Depuis, rattrapé (CRESST-II) et dépassé (CDMS-II) par d'autres cryodétecteurs
- Limité par la taille du cryostat et le fond radioactif (neutron, β)

$\textit{EDELWEISS-I} \rightarrow \textit{EDELWEISS-II}$

- EDELWEISS-II installé à Modane en 2005
- But: gain x 100 en sensibilité
 - $(\sigma \sim 10^{-8} \text{ pb}, 0.002 \text{ evt/kg/j } E_R > 10 \text{keV})$
 - Plus de masse (=plus de détecteurs)
 - Plus de radiopureté, de blindage et de rejet
- Nouveau cryostat
- Nouveaux détecteurs (28, puis 110):
 21 Ge-NTD, 7 NbSi
- Environnement bas-bruit radioactif
 - Salle blanche, air déradonisé
 - Sélection et tests systématiques des matériaux
 - Nouveaux blindages
- Nouvelle électronique (plus intégrée)

EDELWEISS-II

Cryostat EDELWEISS-II

- Reversed geometry
- Nitrogen free : 3 Pulse tube (50K and 80K screens) and 1 He cold vapor reliquefier (consumption ≈ 0)
- Large volume 50l
- Up to \approx 120 detectors
- Compact and hexagonal arrangement
- \Rightarrow Self shielding
- \Rightarrow More statistics
 - \Rightarrow More coincidence (n bkg)

Blindage EDELWEISS-II

- Dedicated HPGe detectors for Systematic checks of radiopurity of all materials
- Clean Room (class 100 around the cryostat, class 10000 around the detectors)
- Deradonized air (from NEMO3) (0.1 Bq/kg)
- 20 cm Pb shielding
- Neutron Shielding
 - 50 cm polyethylène
 - Full coverage
- µ veto (99% coverage)

Février 2005 Mars 2005

Détecteurs Ge-NTD

- Developed by CEA Saclay and Camberra-Eurisys
- Amorphous Ge and Si sublayer (better charge collection for surface events)
- Optimized NTD size and homogeneous working T (16-18 mK) : sub keV resolution

- 21 detectors
- New holders
- New connectors (Teflon and copper only)

Détecteurs NbSi

Identification of near surface events: athermal phonon measurement with NbSi thin film thermometers

Heat and ionization Ge detectors

- Each signal = thermal + athermal component
- For surface events, athermal higher in NbSia
- Thermal signals proportionnal to the deposited energy

- Tests with 200g prototype in EDW-I
- Rejection X 20
- Fiducial volume reduction of 10 %

7 mars 2006

Câblage

- Développement CEA/IPNL, + expertise CRTBT
- Solution « tout numérique » intégrée, avec numérisation dès la sortie du cryostat

Etat d'avancement EDELWEISS-II

- Janv. 2005: Test cryogénique (avec écran Pb cryogénique, câblage et détecteurs)
 - Premiers signaux!
- Fév. 2005: Test de 8 détecteurs, supports, câblage, électronique, acquisition
 - Remise en froid très rapide

2x320 g Ge NTD support EDW-II/Cu

50 g Al₂O₃ IAS Scintillation-Chaleur

2x320 g Ge NTD support EDW-II/Teflon

2 x 320 g Ge NTD support EDW-I
200 g Ge NbSi

R&D EDELWEISS

- Bad charge collection of near-surface events:
 - Study of charge diffusion, trapping and recombination
 - Passive rejection: improve charge collection for surface event
 - Optimization of Ge and Si amorphous sublayer
 - Detectors with thick electrodes
 - Active rejection: identification of the surface events
 - Pulse shape analysis of the charge signals (but high bandwidth ⇔ low noise)
 ⇒ localization of the event
 - Interdigitzed electrodes
 - Detectors sensitive to athermal phonons \Rightarrow 8 Ge/NbSi detectors, 400 g
- Widen choice of target atomic mass? (CDMS: Ge and Si)
 - Low-A: neutron monitoring, sensitivity to spin-dependent σ
 - Al₂O₃ heat-and-scintillation detectors (SciCryo ANR, with IAS and MPP Munich)

- Proposition d'un European Underground Rare Event Calorimeter Array
 - Basée sur expérience acquise avec CRESST-II et EDELWEISS-II, avec forces additionnelles (CERN)
 - Variété de noyaux cibles: Ge, CaWO₄ (dépendance en A)
 - Masse: entre 100 kg et 1 tonne
 - Evolution: continuité de CRESST-II et d'EDELWEISS-II
 - avril 2005: Statement of Interest

Conclusion

- Recherche directe de la matière noire: sujet important dans la décade LHC
- Détecteurs cryogéniques avec discrimination de recul nucléaires: technique la plus performante à l'heure actuelle
- EDELWEISS-I
 - En tête en 2000-2003
 - A atteint ses limites, mais très riches en enseigjements
- EDELWEISS-II démarre, objectif: 10⁻⁸ pb
- Objectif final (10⁻¹⁰ pb) très ambitieux
 - Détecteurs cryogéniques en constante amélioration de sensibilité, avec encore un fort potentiel devant eux