

LHCb : l'Expérience et le Programme de Physique

Laboratoire de Physique Subatomique et de Cosmologie

F. Machefert

- La Violation de CP
- L'Expérience LHCb
 - Description
 - Status de la Construction du Détecteur
- Le Programme de Physique

Introduction : Le LHC et LHCb

 LHCb est une expérience dédiée à l'étude de la violation de CP par la production de hadrons B (B⁰, B^{+/-}, B_s, B_c, b-baryons)

La Violation de CP

Pourquoi la Violation de CP

- L'univers actuel
 - N'est pas vide
 - Est presque vide
- Postulat de Sakharov en 1957 pour expliquer la Baryogénèse
 - Violation du nombre baryonique
 - Violation de CP
 - Déséquilibre thermique
- La Violation de CP à la CKM ne permet pas à elle seul d'expliquer l'asymétrie
 - 3 observables indépendantes de la violation de CP $_{c}$ $_{-(2,28\pm0.02)\times10^{-3}e^{i\pi/4}}$
 - Violation de CP indirect dans $K \rightarrow \pi\pi$ et $K \rightarrow \pi lv$
 - + Violation de CP direct dans K $\rightarrow \pi\pi$
 - Violation de CP dans $B \rightarrow J/\psi K_s$

Phase CKM : violation de CP dans les processus de basse énergie (changement de saveur)

- Violation de CP et Nouvelle Physique
 - Le mécanisme de CKM ne permet pas de rendre compte de la Baryogénèse
 - Il doit exister une autre source de Violation de CP en dehors de la phase CKM
 - Le problème de la Violation de CP forte : $\theta \sim 0$? (moment dipolaire électrique)
 - Toutes les extensions au Modèle Standard sont des sources de Violation de CP

$$\frac{\Delta n_{baryon}}{n_{\gamma}} = \frac{n_{baryon} - n_{\overline{baryon}}}{n_{\gamma}} \sim O(10^{-10})$$

$$\epsilon_{K}^{\prime} = (2.28 \pm 0.02) \times 10^{-3}$$

 $\epsilon^{\prime} / \epsilon = (1.72 \pm 0.18) \times 10^{-3}$
 $\beta = [23.3^{+1.6}_{-1.5}]^{\circ}$

Les Différents Aspects de la Violation de CP

- Dans le mélange (indirect) :
 - Les états propres de masse sont des combinaisons des B⁰(bq) et B⁰(bq)

$$|B_L\rangle = p|B^0\rangle + q|\overline{B^0}\rangle |B_H\rangle = p|B^0\rangle - q|\overline{B^0}\rangle$$

Evolution temporelle des états propres

 $i\frac{d}{dt}(\frac{B}{B}) = (M - \frac{i}{2}\Gamma)(\frac{B}{B})$

- Evolution dépend de Δm et $\Delta \Gamma$
- Comportement oscillant avec une fréquence $\Delta m = \frac{6\pi^2}{2}$
- Dans le MS, oscillations dues à des diagrammes en boîte
- Dans la désintégration (directe)
 - Amplitudes avec des phases fortes/faibles différentes :

 $\left|\overline{A_{f}}/A_{f}\right| \neq 1$

$$A_{f} = \langle f | H | B \rangle = \sum_{k} A_{k} e^{i\delta_{k}} e^{i\phi_{k}} \qquad \overline{A_{f}} = \langle \overline{f} | H | \overline{B} \rangle = \sum_{k} A_{k} e^{i\delta_{k}} e^{-i\phi_{k}}$$

• Vue par Babar et Belle : asymétrie $A_{K\pi} = -0.11 + / -0.02$

 $\Delta m_{\rm d} = G_{\rm F}^2 m_{\rm W}^2 \eta_{\rm B} S_0(m_{\rm t}^2/m_{\rm W}^2) m_{\rm Bd} |V_{\rm td}|^2 f_{\rm B}^2 B_{\rm B}$

$$|q/p| \neq 1$$

Les Différents Aspects de la Violation de CP

- Dans l'interférence entre mélange et désintégration
 - Paramètre de VCP :

- Les différentes Violations de CP :
 - ✤ Violation de CP dans le mélange (indirecte)
 - États propres de masse neutres mélange des états propres de saveur
 - * Violation de CP dans la désintégration (directe)
 - > Amplitudes différentes pour les processus conjugués de CP (états neutres et chargés)
 - * Violation de CP dans l'interférence entre mélange et désintégration
 - > Etats finals de désintégration identiques pour B⁰ et $ar{\mathsf{B}}^{_0}$

La Matrice CKM et le Triangle d'Unitarité

- Etats propres de l'interaction faible sont des combinaisons des états propres de saveur
- La matrice CKM contient les couplages faibles entre les quarks

Le Triangle d'Unitarité

• Au niveau de précision de LHCb, deux triangles d'Unitarité sont nécessaires

LPSC Grenoble, 12 mai 2005

N'est accessible qu'aux machines hadroniques

Le Détecteur LHCb

• LHC

- Collisions pp à 14 TeV
- Fréquence de croisement ~ 40MHz (25ns)
- σ_{inel}~80mb
 - * Haute Lumi \rightarrow pile-up des interactions pp
- $\sigma_{\rm bb}$ importante ~ 500 µb
 - ~0.5% du total
- LHCb
 - Choix d'un fonctionnement à « basse » Luminosité
 - L « par défaut » : L= 2x10³² cm⁻².s⁻¹
 - Une année effective correspond à 10⁷s
 - 2fb⁻¹ par an
 - L ajustable par défocalisation des faisceaux
 - Disponible dès 2007

10¹² paires bb par an

Problèmes de cryogénie de la ligne accélératrice résolus : premier faisceau attendu en 2007

LPSC Grenoble, 12 mai 2005

La Production des B au Point d'Interaction

 Les B sont produits préférentiellement vers l'avant

- LHCb est un spectromètre couvrant la zone angulaire 10 à 300 mrad
 - Les deux B sont dans l'acceptance
 - Etiquetage de la saveur
 - En terme de section efficace
 - + LHCb : $\sigma_{_{bb}} \sim 230 \ \mu b$
 - + ATLAS / CMS : $\sigma_{_{bb}} \sim$ 100 μb

- Reconstruction du B
 - Temps propre : t = mL/pc
 - L typiquement de l'ordre de 1cm
 - Impulsion mesurée par les produits de désintégration (1-100GeV)
- Etiquetage du B à la production : B ou \overline{B} ?
 - Lepton produit par l'autre B ou Kaon

Le Détecteur LHCb

- LHCb est un spectromètre à un bras fonctionnant en mode de collisions pp
- Acceptance
 - 1.9 < |η| < 4.9
 - 10 mrad autour du tube à vide (Béryllium) (radiations)
 - 300 mrad

Le Détecteur de « Vertex » (I)

- 21 stations au Silicium tout autour de la zone d'interaction
- 2 demi-disques placés à gauche et à droite de la ligne du faisceau
- Microstrips Silicium avec géométrie en rΦ
- Approche du faisceau à 8mm
 - Enceinte à vide secondaire
 - Séparé du vide primaire par une enveloppe en béryllium

Le Détecteur de « Vertex » (II)

- Traces produites par la désintégration d'un B :
 - Résolution sur le paramètre d'impact ~ 30 μm
 - Résolution sur l'impulsion des traces de l'ordre de 0.4%

• Résolution sur le temps propre du B : ~ 40 fs ($B_s \rightarrow D_s^{-}\pi^+$)

La Reconstruction des Traces (I)

- Aimant
 - ∫ B.dl ~ 4 Tm
 - Champ magnétique régulièrement inversé pour réduire les effets systématiques
- Chambres « TT » : Trigger tracker
 - Chambres au Silicium
- Chambres T1, T2 et T3 constituées
 d'un
 - Inner tracker : silicium
 - Outer tracker : chambres à pailles

- Pas de matière dans le volume de l'aimant :
 - On connaît la position des éventuels photons de Bremstrahlung

La Reconstruction des Traces (II)

- Multiplicité typique
- 30 traces longues par evt
 (full simulation : Pythia + GEANT)

• Longueur de désintégration du B ~ 1 cm

La Reconstruction des Traces (III)

- Multiplicité typique
- 30 traces longues par evt (full simulation : Pythia + GEANT)

- Longueur de désintégration du B $\sim 1~{\rm cm}$
 - ★ Reconstruction des traces : efficacité supérieure à 95% pour les traces de B

LHCb : L'Identification des Particules

Photo-détection : HPD

- Identification des particules réalisée par deux détecteurs Cerenkov
 - Rich 1
 - 5 cm d'aerogel
 - 84 cm de C₄F₁₀
 - Rich 2
 - 2m de CF₄

Complémentarité des RICH1 et RICH2

• Nécessité d'identifier des particules avec des impulsions très différentes

Identification des Particules

LHCb : Calorimétrie (I)

LPSC Grenoble, 12 mai 2005

- Identification des hadrons, électrons, γ, π⁰
- Mesures des Energies/Positions (impact)
- Déclenchement de Premier niveau
 - Sensible
 - Rapide (40MHz)
- SPD (état de charge)
- PRS (pied de gerbe)
 - Séparation
 - γ / chargés (SPD)
 - Electron, γ / π (PRS)
 - Multiplicité chargée (SPD)

ECAL

- Et des électrons, γ
- Reconstruction offline des π^0
- HCAL
 - Et des Hadrons
 - Identification

26/61

LHCb : Calorimétrie (II)

- ECAL : technologie Shashlik
 - Résistant aux radiations
 - Rapide
 - 66 couches : 2mm Pb + 6mm Sc
- HCAL : tuiles
 - Fer + Scintillateur
- Electroniques ECAL/HCAL identiques

Résolution des Calorimètres

• Résolution en énergie des modules de série (Faisceau test)

Reconstruction des Neutres

LHCb : Détection et Reconstruction des muons (I)

- Contraintes
 - Rapide (déclenchement)
 - Excellente efficacité (à des p<5GeV/c)
 - Résolution Pt> 20% (L0)
 - Offline :
 - Efficacité > 90%
 - Mistag < 1.5%

- Chambres MWPC (Triple GEM : centre)
- Géométrie :
 - 5 Chambres, projectives
 - 1x2 et 4x4 couches de détection

LHCb : Détection et Reconstruction des muons (II)

- Performances (Muons seuls)
 - ε(μ)=94.3%
 - ε(π→μ)=2.9%
- Combinaison Muons+Calo+Rich
 - ε(μ)=93%
 - ε(π→μ)=1%

Déclenchement

Installation de l'Expérience (I)

• LHCb installé dans le puits de l'expérience Delphi

Installation de l'Expérience (II) : 4 mars 2005

Installation de l'Expérience (III) : ECAL

Installation de l'Expérience (IV) : ECAL

Installation de l'Expérience (V) : HCAL

Etiquetage de la Saveur

Tagging power $\varepsilon D^2 = \varepsilon (1-2w)^2$ (in %)

- Etiquetage
 - « opposite side »
 - Lepton, K+/- : chaîne b \rightarrow c \rightarrow s, charge
 - « same side »

Tag	$\varepsilon D^2 = \varepsilon (1-2w)^2$ (%)
Muon	1.0
Electron	0.4
Kaon	2.4
Jet/Vertex charge	1.0
« Same side »	2.1

- Etiquetage « Same side » pour le B_s : $\epsilon_{eff} \sim 6 \%$
 - CDF/D0 : $\varepsilon_{eff} \sim 1 \%$
 - B Factories : $\epsilon_{eff} \sim 30 \%$
- Etiquetage pour le B_d~ 4 %
- Nouvelle méthode « Neural net » : $\epsilon_{eff}(B_s) \sim 9 \%$

Le Programme de Physique

- Oscillations du B_s
- Mesure précise du Triangle d'Unitarité
- Recherche de Nouvelle Physique dans les canaux rares

- Sur LHCb toutes les types de « B » sont produits :
 - B⁰, B^{+/-}, B_s, B_c, b-baryons
 - Fractions : 40, 40, 10, 0.1 et 10%
- La mesure des oscillations des B_s est l'un des premiers buts
 - LEP + SLD : $\Delta m_s > 14.4 \text{ ps}^{-1}$

- CDF/D0 ?
- Le mode le plus simple $B_s \rightarrow D_s^- \pi^+$
 - $D_{s}^{-} \rightarrow \phi \pi^{-}$, $\phi \rightarrow K^{+}K^{-}$
 - 80000 evts, B/S ~ 0.32

LPSC Grenoble, 12 mai 2005

1 année, ∆m =20ps⁻¹ Perfect reconstruction 1000 800 Events 600 400 200 0 2 3 1 0 4 5 Proper time (ps)

- Sur LHCb toutes les types de « B » sont produits :
 - B_0 , $B^{+/-}$, B_s , B_c , b-baryons
 - Fractions : 40, 40, 10, 0.1 et 10%
- La mesure des oscillations des B_s est l'un des premiers buts
 - LEP + SLD : $\Delta m_s > 14.4 \text{ ps}^{-1}$

- CDF/D0 ?
- Le mode le plus simple $B_s \rightarrow D_s^- \pi^+$
 - $D_s \rightarrow \phi \pi^-$, $\phi \rightarrow K^+ K^-$
 - 80000 evts, B/S ~ 0.32

LPSC Grenoble, 12 mai 2005

- Sur LHCb toutes les types de « B » sont produits :
 - B_0 , $B^{+/-}$, B_s , B_c , b-baryons
 - Fractions : 40, 40, 10, 0.1 et 10%
- La mesure des oscillations des B_s est l'un des premiers buts
 - LEP + SLD : $\Delta m_s > 14.4 \text{ ps}^{-1}$

- CDF/D0 ?
- Le mode le plus simple $B_s \rightarrow D_s^- \pi^+$
 - $D_s \rightarrow \phi \pi^-$, $\phi \rightarrow K^+ K^-$
 - 80000 evts, B/S ~ 0.32

LPSC Grenoble, 12 mai 2005

1 année, $\Delta m_s = 20 ps^{-1}$

44/61

- Sur LHCb toutes les types de « B » sont produits :
 - B_0 , $B^{+/-}$, B_s , B_c , b-baryons
 - Fractions : 40, 40, 10, 0.1 et 10%
- La mesure des oscillations des B_s est l'un des premiers buts
 - LEP + SLD : $\Delta m_s > 14.4 \text{ ps}^{-1}$

- CDF/D0 ?
- Le mode le plus simple $B_s \rightarrow D_s^- \pi^+$
 - $D_s \rightarrow \phi \pi^-$, $\phi \rightarrow K^+ K^-$
 - 80000 evts, B/S ~ 0.32

45/61

- Sur LHCb toutes les types de « B » sont produits :
 - B_0 , $B^{+/-}$, B_s , B_c , b-baryons
 - Fractions : 40, 40, 10, 0.1 et 10%
- La mesure des oscillations des B_s est l'un des premiers buts
 - LEP + SLD : $\Delta m_s > 14.4 \text{ ps}^{-1}$

- CDF/D0 ?
- Le mode le plus simple $B_s \rightarrow D_s^- \pi^+$
 - $D_s \rightarrow \phi \pi^-$, $\phi \rightarrow K^+ K^-$
 - 80000 evts, B/S ~ 0.32

1 année, ∆m =20ps⁻¹ Perfect reconstruction 1000 + flavour tagging + proper time resolution + background 800 + acceptance Events 600 400 200 0 1 0 5 Proper time (ps)

- Résolution temps propre ~ 40fs
- Etiquetage de l'état de production
 - Efficacité ~ 55 %
 - Mistag ~ 30 %
- Incertitude sur l'amplitude des oscillation vs Δm_s
 - En 1 an :
 - Observation à 5 σ des oscillations pour $\Delta m_s^{}$ < 68 ps⁻¹
 - LHCb doit scanner le domaine permis par le Modèle Standard
 - Si l'oscillation est vue, elle est précisément mesurée

· $\sigma_{stat}(\Delta m_s) \sim 0.01 \text{ ps}^{-1}$

 $sin(2\beta)$: $B^0 \rightarrow J/\psi K_s$

- Bien mesuré par les usines à B (Babar, Belle)
 - En 2006 probablement $\sigma_{2006}(\sin 2\beta) \sim 0.02$
- Il ne s'agit pas d'un point très important pour LHCb
 - Contrôle important des analyses de violation de CP
 - Recherche d'un terme de violation directe en $Cos \Delta m_d t$

$$A_{f_{CP}} = \frac{\Gamma(\overline{B^{0}} \Rightarrow f_{CP}) - \Gamma(B^{0} \Rightarrow f_{CP})}{\Gamma(\overline{B^{0}} \Rightarrow f_{CP}) + \Gamma(B^{0} \Rightarrow f_{CP})}$$

$$A_{f_{CP}} = S_{f_{CP}} \sin(\Delta m_d t) + C_{f_{CP}} \cos(\Delta m_d t)$$

- 240000 événements par an sur LHCb
- Précisions attendues : $\sigma(\sin 2\beta) \sim 0.02 \dots$ en 1 an !

$\Phi_{s} \text{ et } \Delta\Gamma_{s} : \text{ mode } B_{s} \rightarrow J/\psi \Phi$

- Canal équivalent au mode $B_d \rightarrow J/\psi K_s$ pour le B_s
 - Asymétrie CP due à l'interférence
 - $B_s \rightarrow J/\psi \Phi$ et $B_s \rightarrow \overline{B_s} \rightarrow J/\psi \Phi$
- Mesure Φ_s , phase de l'oscillation du B_s (V_{ts})
- Dans le modèle standard est petit Φ_s
 - $\Phi_{s} \sim -2\lambda^{2}\eta \sim -0.04$
 - Sensible à une nouvelle physique
- Reconstruction en J/ $\psi \rightarrow \mu^+ \mu^-/e^+e^-$, $\Phi \rightarrow K^+K^-$
- 120000 événements (signal) / an
- Etat final est un mélange d'amplitude CP +/- 1
 - Analyse angulaire requise
 - Fit global : extraction de sin(Φ_s) et $\Delta\Gamma_s/\Gamma_s$ ($\Delta\Gamma_s = \Gamma(B^L_s)-\Gamma(B^H_s)$), $\Delta\Gamma_s/\Gamma_s \sim 10\%$ (Modèle Standard)
 - En 1 an et en supposant $\Delta m_s \sim 20 \text{ ps}^{-1}$
- Sensibilités similaires en $B_s \rightarrow J/\psi \eta \ (B_s \rightarrow \eta_c \ \Phi)$
 - Seulement 7000 événements/an ... mais pur CP

γ par le mode D_sK (I)

• La Violation de CP apparaît par l'interférence entre deux diagrammes (arbre) et le mélange

γ par le mode D_sK (II)

- Phase de
- Asymétrie mesurée en 5 années $D_{s}^{+}K^{-}: \Delta - (\gamma + \Phi_{s})$ 0.5 $D_{s}^{-}K^{+}: \Delta + (\gamma + \Phi_{s})$ Extraction de Δ et $\gamma + \Phi_{c}$ -0.25 $\sigma(\gamma) \sim 15^{\circ}$ en 1 an -0.5 0.5 í M $\Delta m_{\rm s}$ 20 ps-1 30 ps-1 25 ps-1 $\sigma(\gamma)$ 14.2° 16.2° 18.3° -0.25 -0.5 2.5 3 3.5 0.5 1.5 2 0 1 *t* [ps]
- Les ambiguïtés sur γ peuvent être levées en utilisant B⁰ → D^(*)π et la symétrie U-spin (échange de d et s)

γ par le mode B⁰ \rightarrow D⁰K^{*0}

- Mesure de 6 taux de désintégrations
 - $B^0 \rightarrow D^0 K^{*0}$, $\overline{D}^0 K^{*0}$ et $D_{CP} K^{*0}$ +conjugués de CP
 - $D_{CP} \rightarrow K^+K^-/\pi^+\pi^-$: méson reconstruit dans un état propre de CP
- Amplitudes permettent l'extraction de γ et de la phase forte Δ
 - $A(B^0 \rightarrow D_{CP}K^{*0}) = 1/\sqrt{2} (A(\overline{B^0} \rightarrow D^0K^{*0}) + A(B^0 \rightarrow D^0K^{*0}))$
 - A3 $/\sqrt{2} = 1/\sqrt{2}$ ($|A1| + |A2| e^{i(\Delta + \gamma)}$)
- Étiquetage simple (self-tagging) par $K^{*_0} \rightarrow K^+ \pi^-$

Mode	Evts	S/B
$\mathrm{B}^{0} \rightarrow \mathrm{D}^{0} \; (\mathrm{K}^{+}\pi^{-}) \; \mathrm{K}^{\star 0}$	3400	> 3.3
$\mathrm{B}^{0} ightarrow \mathrm{D}^{0} \; (\mathrm{K}^{-} \pi^{+}) \; \mathrm{K}^{\star 0}$	500	> 0.6
$B^0 \to D^0_{CP}(K^+K^-) K^{\star 0}$	600	> 0.7

- Statistique obtenue en 1 an par LHCb
 - 55 < γ < 105°
 - -10 < ∆ < 20°

>σ(γ) ~ 7 à 8 °

 $\gamma \text{ par } B_{(s)} \rightarrow h^+h^-$

• A l'origine α par B⁰ $\rightarrow \pi^+\pi^-$... mais forte contribution pingouin

B_{d/s} r

π/K

 π/K

B/S

< 0.7

0.16

0.31

Mesure les asymétries CP de

 $B_{d/s}$

- $B_s \rightarrow K^+K^-$ et $B^0 \rightarrow \pi^+\pi^-$
- $A_{CP}(t) = A_{dir}\cos(\Delta m t) + A_{mix}\sin(\Delta m t)$
- 4 termes : A_{dir} (x2) et A_{mix} (x2) dépendent de

 π/K

 π/K

- γ , Φ_s , Φ_d
- * Ratio des contributions Arbre/pingouin ~ d $e^{i\Theta}$
- Symétrie U-spin (échange d et s)
 - $d_{KK} = d_{\pi\pi} \text{ et } \Theta_{KK} = \Theta_{\pi\pi}$
 - 4 mesures et 3 inconnues (2 extraites par ailleurs)
 - Extraction de γ
- Incertitudes liées à la symétrie U-Spin
- Sensible à une nouvelle physique par pingouins:

	e	evts/an
	$B^0 \rightarrow \pi^+ \pi^-$	26 k
I DSC Cronoble, 12 mai 2005	$B^0 \rightarrow K^+ \pi^-$	135 k
LPSC Grenopie, 12 mai 2005	B _s →K ⁺ K ⁻	37 k

 $+\sigma$ (theorie)

Contraintes imposées sur y

α par le mode $B \rightarrow \rho \pi (\pi^+ \pi^- \pi^0)$ (I)

- Analyse par plot de Dalitz dépendant du temps de $B^0 \rightarrow \rho \pi \rightarrow \pi^+ \pi^- \pi^0$
 - Mesure des amplitudes et des phases des contributions
 - Α_{3π}
 - include A^{+-} , A^{-+} et A^{00}
 - $\cdot A^{ij} = e^{-i\alpha}T^{ij} + P^{ij}$
 - Ajustement à 11 paramètres
 - Extraction de α

55/61

η

α (degrees)

LPSC Grenoble, 12 mai 2005

- La région des bas Pt du π^0 est dépeuplée
 - ρ^{+/-} π^{+/-}
 - Efficacité π⁰ (relatif au total)
 - Résolus ~ 33%
 - Non résolus ~ 20%
 - Total ~ 53 %
 - Prépondérance des non résolus

- 14000 événements par an avec S/B ~ 1.3
- Pour B/S = 3 (<3 @ 90CL)
 - $\alpha(gen)=77.4^{\circ} \rightarrow <\sigma(\alpha)>+8^{\circ}/-8^{\circ}$
 - $\alpha(gen)=106.0^{\circ} \rightarrow <\sigma(\alpha)>+22^{\circ}/-7^{\circ}$

$B^0 \rightarrow K^{*0} \mu^+ \mu^-$

- Faible BR
 - BR(B⁰ \rightarrow K^{*0} $\mu^{+}\mu^{-})_{SM} \sim 10^{-6}$
 - A_{CP}SM<0.05%
- A_{FB}(s)
 - asymétrie Forward-backward dans le référentiel μμ
 - A_{FB}(s) en zéro connu à 5% (MS)
 - Sensible à la nouvelle physique (SUSY)

LHCb: 4400 evts/an B/S<2.6

σ(BR) ~ 2% σ(A_{CP}) ~ 2%

- Difficulté liée au bruit de fond
- En 5 ans :
 - $\sigma(A_{FB}) \sim 0.12$, ajustement à zéro $\sigma(s_0)$ à 2%

 $B_s \rightarrow \mu^+ \mu^-$

- Il s'agit d'une désintégration rare (ΔB=1 FCNC)
 - BR($B_s \rightarrow \mu^+ \mu^-$)SM = (3.5 +/- 0.1)x10⁻⁹

- Forte sensibilité à nouvelle physique (SUSY)
 - BR($B_s \rightarrow \mu^+ \mu^-$) ~ (tan β)⁶ aux grandes valeurs de tan β

- En une année LHCb devrait enregistrer 17 événements (MS)
- Mais difficultés dans l'estimation du bruit de fond
 - * Trop faible statistique MC : aucun événement bruit de fond sélectionné ... correspond à S/ \sqrt{B} >2

- $B_d \rightarrow \Phi K_s$ difficile (déclenchement)
 - Asymétrie (SM) ~ sin(2β)
 - ~ 1000 événement/an
- Si la nouvelle physique apparaît dans ce secteur LHCb doit pouvoir reconstruire d'autres modes du même type (b→s, pingouin)
 - $B_s \rightarrow \Phi \Phi$, KK, $\Phi \gamma$
- La bande passante du HLT doit permettre
 - Physique du Charme :
 - Plus de 10⁸ D^{*} par an

•

• Physique du B_c et des baryons b

Récapitulatif : Signal et Bruits de Fond

	Det.	Rec	Sel.	Trig.	Tot.	Vis.	Annua	B/S
	eff.	. eff.	eff.	eff.	eff.	BR	- I	from
	(%)	(%)	(%)	(%)	(%)	(10^{-6})	signal	bb bkg.
							yield	
$B^{\scriptscriptstyle 0} o \pi^{\scriptscriptstyle +}\pi^{\scriptscriptstyle -}$	12.2	91.6	18.3	33.6	0.69	4.8	26k	< 0.7
$B_s \to K^{\scriptscriptstyle +} K^{\scriptscriptstyle -}$	12.0	92.5	28.6	36.7	0.99	18.5	37k	0.3
$B_s \to D_s^- \pi^+$	5.4	80.6	25.0	31.1	0.34	120.	80k	0.3
$B_s \to D_s^{-^+} K^{\!\!+\!\!-}$	5.4	82.0	20.6	29.5	0.27	10.	5.4k	< 1.0
$B^0 \rightarrow D^{\sim 0} (K\pi) K^{\star 0}$	5.3	81.8	22.9	35.4	0.35	1.2	3.4k	< 0.5
$B^0 \rightarrow J/\psi(\mu\mu) K^0_s$	6.5	66.5	53.5	60.5	1.39	20.	216k	0.8
$B^0 \rightarrow J/\psi(ee) \ K^0_s$	5.8	60.8	17.7	26.5	0.16	20.	26k	1.0
$B_s \rightarrow J/\psi(\mu\mu) \phi$	7.6	82.5	41.6	64.0	1.67	31.	100k	< 0.3
$B_s \rightarrow J/\psi(ee) \phi$	6.7	76.5	22.0	28.0	0.32	31.	20k	0.7
$B^0 \rightarrow \rho \pi$	6.0	65.5	2.0	36.0	0.03	20.	4.4k	< 7.1
$B^0 \rightarrow K^{*0} \gamma$	9.5	86.8	5.0	37.8	0.16	29.	35k	< 0.7
$B_s \rightarrow \phi \gamma$	9.7	86.3	7.6	34.3	0.22	21.	9.3k	< 2.4

• Une année = 10^7 s, L=2x10³²cm⁻²s⁻¹, σ_{bb} =500µb \rightarrow 10¹² paires bb

Conclusion

- LHCb est une expérience de seconde génération pour la Physique du B
 - Les usines à B ont ouvert la voie
 - LHCb : un pas supplémentaire par rapport à BaBar et Belle
 - Très grande statistique au LHC
 - Accès à de nouvelles espèces de hadrons B
- Pour cela LHCb
 - Détecteur de Vertex et Identification de Particules
 - Un déclenchement flexible
 - Large spectre de processus peut être étudié
 - Redondance et sensibilité à une nouvelle physique variable

Au Programme de la Physique du B et des Saveurs

