

Une brève histoire du Top: Production et propriétés du quark top à DØ.

Benoit Clément Institut de Recherches Subatomiques, Strasbourg

Au menu

- O Historique de la découverte du top
- Le Tevatron et l'expérience DØ
- B Le quark top au Tevatron
- Production de paires de top
- S Propriétés du quark top
- O Production électrofaible (single top)

Au menu

- O Historique de la découverte du top
- Le Tevatron et l'expérience DØ
- B Le quark top au Tevatron
- Production de paires de top
- Ø Propriétés du quark top
- **O** Production électrofaible (single top)

Une troisième famille ?

1974 : Deux familles de leptons et de quarks: $\begin{pmatrix} v_e \\ e \end{pmatrix} \begin{pmatrix} v_{\mu} \\ \mu \end{pmatrix} \begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix}$

1975-77:

- Expérience Mark I : découverte du lepton τ (cinématique de désintégration : v_r?)

- Découverte de la résonance Upsilon à Fermilab : nouveau quark b. Ce quark fait-il partie d'un doublet d'isospin?

1984 : DESY asymétrie FB pour ee->bb̄ : A_{fb}=22.5 ± 6.5% (SM isodoublet : 25.2%; isosinglet : 0%)

Partenaire du quark b : **top**. masse s/c/b : 0.5/1.5/4.5 -> m_{top}~15 GeV/c² ???

A la recherche du top

Certains paramètres EW sont sensibles à m_{top}:

- Corrections radiatives à la masse du Z (~m²top)
- Vertex Zbb (R_b = Z->bb / Z->hadrons)

m_{top} ~ 170 GeV/c²

B. Clément - Séminaire LPSC Grenoble - 9 Février 2006

10²

m_н [GeV]

150

130

10

5

6 EVENTS

10³

Découverte du quark top

Le top est plus lourd que le W :

- faible section efficace de production
- Difficile de séparer le signal de W+jets

Tevatron RunI (92-95) : pp̄ 1.8 TeV, CDF+DØ, pp̄->tt̄->WbWb̄ Découverte en 1995

Au menu

- O Historique de la découverte du top
- 2 Le Tevatron et l'expérience DØ
- B Le quark top au Tevatron
- Production par paires
- Ø Propriétés du quark top
- **O** Production électrofaible (single top)

7

Le complexe d'accélération

	Run I	Run IIa	Run IIb
Paquets / tour	6 × 6	36 × 36	36 ×36
√s (TeV)	1.8	1.96	1.96
Luminosité (cm ⁻² s ⁻¹)	1.6×10 ³⁰	1 ×10 ³²	3 ×10 ³²
∫Ldt (pb ⁻¹ /semaine)	3	17	50
Temps de croisement (ns)	3500	396	396
Interactions/croisement	2.5	2.3	8
Periode	92/98	01/06	06/09

amélioration de la production d'antiprotons:

recycleur d'antiprotons (automne 2004) electron cooling (été 2005)

Luminosité

depuis avril 2002: ~1.4 fb⁻¹ délivrés ~ 1.15 fb⁻¹ enregistrés

Efficacité : ~83%

<- Nombre d'anti-protons disponibles

B. Clément - Séminaire LPSC Grenoble - 9 Février 2006

Base

Détecteur DØ

De la collision au détecteur

Les neutrinos sortent du détecteur : énergie manquante

B. Clément - Séminaire LPSC Grenoble - 9 Février 2006

Hadron

Calorimas

Muan

Detector

Electromagnetic

Calorimeter

Detector

Quelques sections efficaces

Reconstruction des jets

Calorimètre organisé en tours pseudo-projectives : $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$ Couverture : $|\eta| < 4.2$

Jets reconstruit à partir des tours du calorimètre avec un algorithme de cône : R= $\int (\Delta \eta^2 + \Delta \phi^2) = 0.5$

 $\begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \begin{array}{l} & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} \\ & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} \\ & \end{array}{l} \\ & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} \\ & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} \\ & \end{array}{l} \\ & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} \\ & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} \\ & \end{array}{l} \\ & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} \\ & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} \\ & \end{array}{l} \\ & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} \\ & \end{array}{l} \\ & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} \\ & \end{array}{l} \\ & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} \\ & \end{array}{l} \\ & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} \\ & \end{array}{l} \\ & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} \\ & \end{array}{l} \\ & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} \\ & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} \\ & \end{array}{l} \\ & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} \\ & \end{array}{l} \\ & \end{array}{l} \\ & \begin{array}{l} & \end{array}{l} \\ \\ & \end{array}{l} \\ \\ & \end{array}{l} \\ \\ & \end{array}{l} \\ & \end{array}{l} \\ & \end{array}{l} \\ \\ \\ & \end{array}{l} \\ \\ & \end{array}{l} \\ \\ & \end{array}{l} \\ \\ \\ & \end{array}{l} \\ \\ & \end{array}{l} \\ \\ \\ \\ \\ & \end{array}{l} \\ \\ \\ \\ & \end{array}{l} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\$

Identification des jets b

Important pour étudier le top, mais aussi le Higgs (H->bb̄) où la SUSY (sbottom, stop)

Caractéristiques des hadrons beaux Désintégration par interaction faible, grande durée de vie (~10⁻¹²s) - Traces à grand paramètre d'impact (IP) -> JLIP - Vertex secondaire (distance de $vol \sim qq mm) \rightarrow SVX$ Masse élevée (~4.5 GeV/c²) : Masse du vertex secondaire élevée. Fragmentation plus dure. Taux de désintégration semi-leptonique important (~20%) : - Muons ou électrons dans les jets. -> SLT

Identification des jets b

Trois algorithmes à DØ :

SLT : Soft Lepton Tagger, muon/électron dans les jets. SVX : Reconstruction de vertex secondaire. JLIP : Jet LifeTime Probability, utilise l'IP des traces pour calculer la probabilité qu'un jet provienne du vertex primaire.

Efficacité et mistag sont évalués dans les données.

Au menu

- O Historique de la découverte du top
- Le Tevatron et l'expérience DØ
- B Le quark top au Tevatron
- Production de paires de top
- Ø Propriétés du quark top
- **O** Production électrofaible (single top)

Que sait-on du quark top ?

Production du top avec un collisionneur hadronique

Toute la physique du top

Au menu

- Historique de la découverte du top
- Le Tevatron et l'expérience DØ
- B Le quark top au Tevatron
- Production de paires de top
- Ø Propriétés du quark top
- **O** Production électrofaible (single top)

Production de paires tt

Production par interaction forte. Décroissance du top : t->Wb Les canaux d'analyse sont caractérisés par les décroissances des W.

Mesure de la section efficace

Section efficace = Comptage d'événements sélectionnés

Dilepton :	Lepton+jet :	Alljet :
Sélection	Sélection topologique	Sélection
topologique,	(Likelihood)	topologique (réseau
pas de b-tagging.	ou	de neurones)
	b-tagging (SVX SLT)	et b-tagging (SVX)

Sections efficaces

Au menu

- O Historique de la découverte du top
- Le Tevatron et l'expérience DØ
- B La quark top au Tevatron
- Production de paires de top
- S Propriétés du quark top
- **O** Production électrofaible (single top)

Mesure simultanée de σ_{tt} et R

- Rapport d'embranchement B(t \rightarrow Wb)/B(t \rightarrow Wq): $R = \frac{B(t \rightarrow Wb)}{B(t \rightarrow Wq)} = \frac{|V_{tb}|^2}{|V_{ts}|^2 + |V_{td}|^2 + |V_{tb}|^2} = |V_{tb}|^2 \sim 0.998 \checkmark \text{Dans le MS}$
- R est mesuré en comparant le nombre de candidats tt avec 0, 1 et 2 jets b-taggés.
 - Pour les événements sans tag, un discriminant topologique est utilisé (fonction de vraisemblance)

Production résonante X->tt

Recherche de boson lourd: Dimensions supplémentaires, théorie de grande unification.

Reconstruction de la masse invariante du système tt Lepton+jet.

Masse du top et masse du Higgs

Masse du top

Différentes méthodes :

- ajustements dynamiques (éléments de matrices) : fonction de vraisemblance événement par événement utilisant toute l'information reconstruite.

ajustements topologiques (templates)

Erreur systématique dominante : Echelle en énergie des jets :

-> ajustement simultané de la masse et de l'échelle en énergie grâce à la masse du W.

Masse du top

Hélicité du W

Charge du quark top

La particule observé de masse ~175 GeV/c² est-elle le quark top ou quark exotique de charge 4/3 ? -> modèles compatibles avec les mesures électrofaibles (LEP) W.-F. Chang et al.,hep-ph/9810531, E. Ma et al., hep-ph/9909537

Au menu

- O Historique de la découverte du top
- Le Tevatron et l'expérience DØ
- B La quark top au Tevatron
- Production de paires de top
- S Propriétés du quark top
- O Production électrofaible (single top)

Production électrofaible

- Bruit de fond (W+jet) plus important. Sensibilité à de la nouvelle physique : bosons lourds chargés (H⁺,W'), quatrième génération, ...

La voie t au Tevatron

Quark b dans la voie d'entrée peut provenir d'une conversion de gluon.

Contribution des 2 diagrammes (problèmes de double comptage)

Cinématique au niveau partonique

Principaux fonds

Production associée d' un boson W et de jets, Wjj ($\sigma \approx O(100)$ pb), Wbb ($\sigma \approx O(1)$ pb), irreductible

Paire de quarks top (σ≈7pb) dans les canaux lepton+jet et dileptons

Dibosons en lepton, neutrino et 2 jets: WW (σ≈12pb) , WZ(σ≈4pb)

Evénements multijet ("QCD")avec un "faux" lepton isolé :

- <u>électron</u> : jet identifié comme un électron.

- <u>muon</u> : muon provenant de la décroissance d'un hadron beau ou charmé, apparaissant isolé.

Stratégie de l'analyse

Estimer les fonds dans les données

Distribution pour des variables discriminantes

Formes

En général : événements simulés, corrigés des efficacités de déclenchement et d'identification des jets b, qui ne sont pas simulés. Multijets : lot de données enrichi en multijet en inversant une coupure de sélection du lepton.

Normalisation

W+jet et Multijets (lepton+jet) : Mesure le taux de vrai/faux leptons isolés en relachant une coupure d'isolation dont l'efficacité de sélection est connue:

$$\begin{cases} N_{Loose} = N_{real} + N_{fake} \\ N_{Tight} = \varepsilon_{real} \cdot N_{real} + \varepsilon_{fake} \cdot N_{fake} \end{cases} \begin{cases} N_{real} = \frac{N_{Tight} - \varepsilon_{fake} \cdot N_{Loose}}{\varepsilon_{real} - \varepsilon_{fake}} \\ N_{fake} = \frac{N_{Tight} - \varepsilon_{real} \cdot N_{Loose}}{\varepsilon_{fake} - \varepsilon_{real}} \end{cases}$$

Variables discriminantes

Canaux combinés : electron + muon, simple + double tags

B. Clément - Séminaire LPSC Grenoble - 9 Février 2006

500

400

0.6

tŦ

— Data

Multijet

Centrality

0.8

t-channel (x10)

s-channel (x10)

W+jets, WW, WZ

All jets

invariant mass

Invariant mass of all jets (GeV)

600

700

Centrality

Fonction de vraisemblance

Limites à 95% CL

Single Top au Run II

95 % CL Expected/Observed Upper Limits in pb			
	s-channel,tb	t-channel, tqb	
CDF Run II, 162 pb^{-1}	12.1/13.6	11.2/10.1	PRD 71, 012005
DO Run II, 230 pb ⁻¹			
Cuts	9.8/10.6	12.4/11.3	
DTs & binned likelihood	4.5/8.3	6.4/8.1	
NNs & binned likelihood	4.5/6.4	5.8/5.0	PLB 622,
DO Run II, 370 pb ⁻¹			200-270
LHs & binned likelihood	3.3/5.0	4.3/4.4	
NLO theory	= 0.88	= 1.98	

Perspectives

Première évidence fin 2006?

Conclusion

La physique du top est un secteur primordial pour tester le modèle standard et ses limites.

Permet de sonder la physique à l'echelle de brisure de symétrie électrofaible.

Tevatron est le seul accélérateur capable de produire des quarks top et d'étudier ses propriétés.

A suivre :

- masse du top (Δm ~1 GEV ?)
- single top
- production résonante ?

Bientôt le LHC :

- mesures plus précises
- le top devient un bruit de fond aux processus de nouvelle physique !

Comparaison avec l'analyse NN

Même analyse avec 230pb⁻¹ pour se comparer à l'analyse NN (publiée).

- Limites attendues sans systématiques : teste la sensibilité des deux analyses LH/NN.

-> Pas de différence significative

 Limites attendues avec systématiques : réduction des systématiques (JES, b-tagging) : ~ 0.3 pb

Comparison of expected limits between DØ Neural Network (NN) and Likelihood (LH) analyses for an integrated luminosity of 230 pb ⁻¹							
	s-channel		t-channel				
	NN	LH	NN	LH			
without systematics	3.6 pb	3.6 pb	4.6 pb	4.8 pb			
with systematics	4.4 pb	4.1 pb	$5.8~{ m pb}$	5.5 pb			

Une collision hadronique

