Le quark Top : de la découverte aux mesures de précision

Daniel BLOCH IReS Strasbourg

> LPSC Grenoble, 19 Mai 2005

- découvert au Tevatron en 1994-1995 par les expériences CDF et DØ (avec 50-120 pb⁻¹)
- c'est le plus lourd de tous les fermions : 35 fois la masse du b

• mais il est est produit une fois sur 10 milliards !

- Ia masse du top est un paramètre fondamental du Modèle Standard
 - corrections radiatives importantes:

 $\Delta \ M_W \ \alpha \ M_T^2 \quad \Delta \ M_W \ \alpha \ In \ M_H$

couplage au Higgs ~ Mt²

80.6 LEP1. SLD Data LEP2, pp Data 80.5 68% CL ∑a9 95] 80.4-CDF&D0 **RUN II** _^ E 80.3m_H [Ge\ Preliminary 80.2 150 190 130 170 210 m, [GeV]

• avec M_w (mesures directes et indirectes) : forte contrainte sur la valeur attendue pour M_{Higgs} (< 280 GeV, à 95% C.L. actuellement)

le top peut avoir un couplage privilégié (~M²) à de nouvelles particules

production du top au Tevatron

principalement **produit en paires** (σ ~6.7pb, th.NLO) via q \overline{q} (85%) et gg (15%) (contrairement au LHC via gg (90%))

durée de vie plus courte que le temps d'hadronisation: $\tau_{top} \sim 4 \times 10^{-25}$ s (due à sa masse), $\Lambda^{-1} \sim (200 \text{ MeV})^{-1} \sim 10^{-23}$ s il se désintègre donc comme un quark libre : excellent outil pour étudier les couplages électrofaibles

Modèle Standard (3 familles): Br($t \rightarrow Wb$) = 0.999

Etats finals :

- Dilepton (5%, faible bruit de fond) : 2 leptons (e/μ) à grand p_T + 2 jets b + grande énergie transverse manquante F_T
- Lepton+jets (30%, bdf acceptable) : 1 lepton (e/µ) à grand p_T + 4 jets (dont 2 b) + ₽/T

• τ + jets (21%) : très grand bdf

le Tevatron : le collisionneur de plus haute énergie à ce jour

	Run I	Run Ila	Run IIb
Bunches in Turn	6 × 6	36 × 36	36 ×36
√s (TeV)	1.8	1.96	1.96
Typical L (cm ⁻² s ⁻¹)	1.6 ×10 ³⁰	9 ×10 ³¹	3 ×10 ³²
∫ Ldt (pb ⁻¹ /week)	3	17	50
Bunch crossing (ns)	3500	396	396
Interactions/ crossing	2.5	2.3	8
	Run I \rightarrow Run IIa \rightarrow Run IIb 0.1 fb ⁻¹		

par rapport au Run I : $\sqrt{s} = 1.8 \nearrow 2 \text{ TeV} : \sigma(\text{tt}) \times 1.3$ Run II depuis 2001 : luminosité pic x 50

des détecteurs améliorés pour le Run II

- nouveaux trajectographes internes au Silicium (L0 CDF, 4 couches Si D \emptyset) + chambres à derive (CDF), fibres scintillantes (D \emptyset) + solenoïde (nouveau pour DØ, 2T)
- Calorimètres EM et Hadroniques (jets, électrons, γ) finement segmentés, hermétiques : acceptance étendue (CDF) , pieds de gerbe (DØ)
- Détecteurs à muons: acceptance étendue ($|\eta| < 2 \text{ DØ}$, < 1.5 CDF)
- électronique plus rapide, nouveaux triggers (L2 vertex secondaires CDF), DAQ $D\emptyset$: 8 MHz \rightarrow L1 \rightarrow 1.5 kHz \rightarrow L2 \rightarrow 1 kHz \rightarrow DAQ / L3 \rightarrow 50 Hz

Daniel Bloch / IReS-Strasbourg

les calorimètres

- D0 Uranium-Liquid Argon calorimètre à échantillonage |η|<4.2:
 - compensation $e/\pi < 1.05$, E > 30 GeV
 - réponse uniforme, hermétique
 - grande couverture angulaire (sauf ICD, inter-cryostats-det.)
 - fine segmentation spatiale 0.1 x 0.1

- **CDF sandwich scintillateur Pb/Fe** |η|<**3.6:**
 - réponse différente aux électrons et aux hadrons chargés
 - bouchons étendus (plug)
 - segmentation $\Delta \eta \Delta \phi = 0.1 \times 0.25$

correction en énergie des jets

remonter de l'énergie mesurée (dans cône de rayon R = $\sqrt{(\Delta \eta^2 + \Delta \phi^2)} \sim 0.5$) à l'énergie du parton initial

Daniel Bloch / IReS-Strasbourg

9

systematiques sur l'énergie des jets

- CDF a maintenant une incertitude systématique sur l'énergie des jets qui est comparable, voir meilleure qu'au Run I (~3%)
- DØ est plus conservatif (la résolution est moins bonne qu'au Run I) mais devrait pouvoir s'améliorer

application à la QCD: section efficace de production inclusive de jets

identification des leptons

sections efficaces W et Z

en bon accord avec le Modèle Standard (Hamberg et al., Nucl.Phys. B359, 343 (1991), Frixione, Mangano hep-ph/0405130: ± 2%)

limitations: luminosité (±6.5%), PDF (±1.5%)

permet aussi de valider l'identification des leptons !

étiquetage des jets de quark b

évaluation de l'efficacité

- "mistags" (quarks légers) : avec les ∆L et IP de signe négatif
- b-tagging: avec les jets b semileptoniques (DØ: $b \rightarrow \mu$) ou avec la masse au vertex secondaire (CDF)

- indispensable pour le top, le Higgs, la SUSY, etc...
- spécificités des hadrons beaux: masse élevée, durée de vie ~1.5 ps, énergiques (Eb/Ejet~0.7)
 ⇒ ΔL~1-2 mm, traces à grands paramètres d'impact (IP)
- reconstruction des vertex secondaires (mesure ∆L) ou des IP (comptage ou probabilité)
- ∆L ou IP de signe positif (négatif) si vertex secondaire en amont (en aval) du vertex primaire

performances des algorithmes

SecVtx Tag Efficiency for Top b-Jets b-tag efficiency 0.7 b-tag efficiency **Tight SecVtx** 35<E_T<55 GeV 0.6 |n|<1.2 Loose SecVtx 0.5 0.4 0.5 42% systematic error 0.3 0.4 vertex 0.2 0.3 Top MC scaled to match data secondaires 0.1 Only b-jets with $|\eta| < 1$ paramètres CDF 0.2 d'impact DØ 40 140 160 180 20 60 80 120 100 0.1 jet E_T (GeV) SecVtx Mistag Rates 0 0.005 0.01 0.015 0.025 0.02 0.06 rate light-jet mistag rate **Tight SecVtx** mistag 0.05 Loose SecVtx 0.04 typiquement 40-50% d'efficacité de 0.03 b-tagging pour 0.5-1% de mistags 0.5% 0.01 Only jets with $|\eta| < 1$ 0 40 60 80 100 120 140 160 180 20 jet E_T (GeV)

les Wbb sont un bruit de fond important pour le top, le Higgs... DØ :

- W \rightarrow ev + bb : p_T(e)> 20 GeV, 2 jets p_T > 20 GeV
- comparés aux MC ALPGEN, PYTHIA + simulation détecteur et normalisés aux sections efficaces NLO (MCFM pour W+jets)
- sans b-tagging: 2540 evts observés, (2580 ± 630 attendus)
- ≥ 1 jet b-tag: 76 evts observés (73 ± 20 attendus) : données bien décrites par la simulation (syst.exp ~ ±15%)

section efficace de production tt

- Mesurée dans différents états finaux : Ilbbvv, Ibbjjv, jjjjjj
 - tester la cinématique (accord data/MC)
 - permet d'appliquer directement le b-tagging
 - tester la cohérence des différentes mesures
 - valider les sélections pour d'autres mesures (masse, hélicité W...)
- Test de la prédiction du Modèle Standard

valeur théorique : $\sigma(tt) \sim 6.7 \text{ pb}$ avec incertitude ±15% (PDF, α s, μ r, μ f)

Sensibilité à de la nouvelle physique ?

- bruit de fond pour le Higgs et de nombreux canaux SUSY

σ(tīt) dileptons

 $\sigma = 14.3^{+5.1}_{-4.3}$ (stat) $^{+2.6}_{-1.9}$ (syst) ± 0.9 (lum) pb (DØ ~ 150 pb⁻¹)

 $\sigma = 7.0^{+2.7}_{-2.3}$ (stat) $^{+1.5}_{-1.3}$ (syst) ± 0.4 (lum) pb (CDF 197 pb⁻¹)

Run / event: 169261 / 6854840

$\sigma(t\bar{t})$ lepton + jets avec b-tagging

 $e/\mu + \ge 3$ jets dont 1 ou 2 jets b + Fbruits principaux: qcd multijets, W+jets (Wbb, Wc...)

compilation sections efficaces tt

bon accord entre les mesures et avec la théorie

comparaison avec la théorie

±10% (combinaison des résultats, plus de stat.)

mesure de R=Br(t \rightarrow Wb)/Br(t \rightarrow Wq)

- Dans le modèle Standard, le top se désintègre presque exclusivement en Wb, car:
 - 3 familles de quarks et leptons et unitarité de la matrice CKM
 - $|V_{ub}|$ et $|V_{cb}|$ sont petits
- $R = Br(t \rightarrow Wb) / Br(t \rightarrow Wq) = |V_{tb}|^2 / (|V_{td}|^2 + |V_{ts}|^2 + |V_{tb}|^2)$
 - $|V_{tb}|^2 > 0.998 (90\% CL) [pdg]$
- Toute déviation de R = 1 serait un signe de nouvelle physique
- Comptage des candidats $tt \rightarrow l+jets$ avec 0, 1, 2 jets taggés b:

$$N_{0-\mathrm{tag}} = N_{tt}(1 - R\epsilon_b)^2$$

 $N_{1-\mathrm{tag}} = 2N_{tt}(R\epsilon_b)(1 - R\epsilon_b)$
 $N_{2-\mathrm{tag}} = N_{tt}(R\epsilon_b)^2$

 ϵ **b** = efficacité de b-tagging équation valide si pas de bruit

dans la pratique : fit à plusieurs variables (likelihood)

mesures de R

- le quark top peut aussi être produit par interaction faible
 → permet une mesure directe de |Vtb|
- mais pas encore observé !
- section efficace single top seulement 2 fois plus faible que ttbar, mais bien plus de bruit de fond (surtout W+jets et ttbar) car il y a moins de jets ici (~2 au lieu de \geq 3-4)
- 1-2 jets de quark b dans chaque événement \rightarrow b-tagging

analyse single top dans DØ

- utilise 11 variables topologiques (info énergies, angles, masse évaluée du top)
- distingue e ou μ +jets, simple et double b-tag, voies s et voie t
- 3 analyses indépendantes: coupures séquentielles, arbre de décision et <u>Neural Network</u> (avec 2 NN's: contre les W+jets et contre les ttbar)

26

quelques variables discriminantes

résultats single top

masse du top : état des lieux

LPSC, 19 Mai 2005 29

méthode des éléments de matrice

- utilisée par **DØ au Run I** : canal lepton+jets, sans b-tagging
- prend en compte les 12 permutations possibles entre jets et les 2 solutions d'impulsion (Pz) pour les neutrinos
- Une probabilité est calculée pour chaque combinaison, dépendant des informations cinématiques, et contrainte par la section efficace théorique (LO)

W(x,y) = probabilité pour un parton avec une variable *y* d'être mesurée avec une valeur *x*

DØ Run I, Nature 429 (2004) 640 : m(top) = 180.1 ± 5.3 GeV

mesure de m(top) au Run II : DØ

seulement des résultats préliminaires pour le moment (avec 160-230 pb⁻¹) la systématique principale est la correction en énergie des jets...

> di-leptons : 13 evts, 3 bdf attendus pondère chaque événement vs hyp. de masse, likelihood fit: 155±14±7 GeV

> > **5250**

- précision proche du Run I
- améliorations en vue

I+jets templates : analyses topologiques et b-tagging fit cinématique: permutation de meilleur χ^2 retenue mass templates fit: 170±6±7 GeV (topo) 171±4±6 GeV (b-tag)

Daniel Bloch / IReS-Strasbourg

I+jets ideogramme (2004) : toutes permutations de jets likelihood (multi-variables) : 170±7±8 GeV

Fit Mass (GeV)

méthode des templates : CDF distingue 4 lots lepton+jets suivant le nb de jets b-tag: 2 tags ou 1 tag Tight (grand poids) ou 1 tag Loose ou 0 tag (plus faible poids) • mesure m(top \rightarrow lvb), mais aussi "simultanément" m(W \rightarrow jj), ou plutôt la correction en énergie JES (Jet Energy Scale) à appliquer (exprimée en σ (JES)) très faible 2-tag 1-tag(T) corrélation entre 2000 All signal MC All signal MC 1000 1800 m(top) et m(W) ő 1600 m(top) RMS: 27 GeV/c² RMS: 32 GeV/c² 800 1400 Corr. comb (28% of signal) 0.02 Corr. comb (47% of signal) 1200 600 1000 RMS: 13 GeV/c² RMS: 13 GeV/c² 200 0.018 800 400 600 0.016 CDF Run II preliminary CDF Run II preliminary 400 200 190 0.014 200 0.012 300 350 350 200 250 150 200 250 300 M_{reco} (GeV/c²) M_{reco} (GeV/c²) 180 0.01 1-tag(L) 0-tag 0.008 170 3800 9700 All signal MC All signal MC 0.006 RMS: 31 GeV/c² RMS: 37 GeV/c² 160 0.004 . 2600Ē Corr. comb (20% of signal) Corr. comb (18% of signal) Ē500Ē 0.002 RMS: 13 GeV/c² RMS: 12 GeV/c² 400 E 150 20 300 40 80 60 100 120 140 300 200 200 CDF Run II preliminary CDF Run II preliminary 100 100

Daniel Bloch / IReS-Strasbourg

200

250

300

350

M_{reco} (GeV/c²)

150

200

250

300

350 M_{reco} (GeV/c²)

150

0

Entries/(5 GeV/c⁺

32 LPSC. 19 Mai 2005

templates CDF : fit 2D

mesure à ce jour !

 $=173.5^{+4.1}_{-4.0}$ GeV/c²

masse du top : résumé au Run II

l'objectif d'atteindre une précision de ±2 GeV au Run II semble donc réaliste !

Conclusion

- Les analyses sur le top sont désormais plus précises qu'au Run I
- la statistique va encore augmenter : 200-400 pb⁻¹ exploités actuellement, 700 pb⁻¹ sont déjà sur bandes, on prévoit ~ 2 fb⁻¹ en 2006, ~ 4 fb⁻¹ en 2007, ~ 8 fb⁻¹ en 2009
- mais un gros effort doit (peut) encore être fait sur les systématiques (correction en énergie des jets entre autre) à noter que certaines systématiques diminueront aussi avec une plus grande statistique (uniformité du calo, E(jet b) avec Z→bb)
- l'acceptance peut encore augmenter : meilleure identification des électrons, des muons, meilleur b-tagging (aussi DØ track trigger en 2005)
- upgrade pour 2006 (DØ):
 - nouveau layer 0 du détecteur Si (à R=1.5 cm au lieu de 2.6 cm)
 - proposal pour avoir un taux d'acquisition supplémentaire de 50 Hz dédié à la physique du B (Δms en particulier)