Résultats et perspectives de l'expérience KamLAND

Jean-stéphane Ricol

Tohoku University

KamLAND Collaboration

Plan

- Les neutrinos solaires
- Présentation de KamLAND
- Résultats sur l'oscillation des antineutrinos réacteurs
- Purification en vue de la détection en temps réel des neutrinos solaires ⁷Be
- Résumé

Les neutrinos solaires

Modèle solaire : 4 p + 2e⁻ \rightarrow ⁴He + 2 v_e + 26.73 MeV

Seuls les neutrinos permettent d'avoir accès au cœur dense du soleil

- Premières expériences radiochimiques
 → aucune information énergie
- SNO, SK: seulement 1/2000 des v solaires détectés en temps réel

Le problème des neutrinos solaires

Pendant plus de 30 ans, 2-3 fois moins de neutrinos observés:

Oscillation des neutrinos solaires

Oscillation des neutrinos

Le site de l'experience

Information réacteurs

Companies électriques → puissance thermique et composition du 'carburant' nucléaire

Le détecteur

1000 tonnes de scintillateur liquide (80% dodecane + 20% pseudocumene + 1.52 g/l PPO)

Détection des anti-neutrinos

désintégration beta inverse : $\bar{v}_e + p \rightarrow n + e^+$

Calibration

Produits de spallation n, ¹²B

Calibration en énergie

Correction de la charge des PMs (variation du gain, angle solide)

• Correction de la non linéarité (Tcherenkov, Birks quenching) Résolution en énergie : $6.3\% / \sqrt{E}$ [MeV]

Calibrations des positions le long de Z

Volume fiduciel : R<5.5 m

Bruit de fond

Muons

Taux de muons ~ 0.34 Hz

Veto

• 2 ms veto sur tout le détecteur après

tous les muons

(élimine efficacement n spalation)

2 sec veto sur tout le détecteur pour

muons avec gerbe e.m

$$(\Delta E = E_{détectée} - E_{attendue}(L_{\mu}) > 3 \text{ GeV})$$

2 sec veto sur tout le détecteur pour

les muons mal reconstruits

- 2 sec veto pour le volume situé à 3m
 - de la trace pour les autres muons

Temps mort = 9.7%

Sélection des événements réacteurs

Distributions des evts prompt et retardé

Bruit de fond résiduel

Nb evts

- Accidentels : 2.69 ± 0.02
- •⁸He,⁹Li : 4.8 ± 0.9
- n spallation isolé < 0.89
- ¹³C(α,n)¹⁶O : 10.3 ± 7.1

Total : 17.8 ± 7.3

BF (α,n)

²¹⁰Po (5.3 MeV α): > 99% α

 $^{13}C(\alpha,n)^{16}O: > 99\%(\alpha,n)$

(Section efficace Sekharan et al)

Taux d'événements

Données 1er résultats : $0.601 \pm 0.069(stat) \pm 0.042(syst)$ [nouvelle analyse]en accord avec $0.589 \pm 0.085(stat) \pm 0.042(syst)$ [ancienne + BF (α ,n)]

Disparition $\overline{v_e}$ confirmée à 99.998% CL

Erreurs systématiques

		Erreur dominante
Systematic	%	
Volume fiduciel	4.7 ×	
Seuil énergie	2.3	(Juin 2005) 4.7 \rightarrow 1-1.5%
Efficacités coupures	1.6	
Temps vie	0.06	
P _{thermique} réacteurs	2.1	control cables
Composition carburant	1.0	fiducial volume R<5 m
Spectre antineutrinos	2.5	
Section efficace	0.2	calibration
Total	6.5	source

Taux vs. flux

Analyse du spectre

Région permise pour les paramètres d'oscillation

Analyse combinee : $\Delta m^2 = 7.9 \stackrel{+0.6}{_{-0.5}} \times 10^{-5} \text{ eV}^2$ $\tan^2\theta = 0.40 \stackrel{+0.10}{_{-0.07}}$

Futurs résultats

> Réacteurs

 Analyse du taux d'événements et de l'angle de mélange sont maintenant limitées par les systématiques

 \rightarrow système calibration 4π

- Résolution Δm^2 provient de la distorsion du spectre \rightarrow plus de statistique
- Shika2 démarre en 2006 à 88 km, près du premier minimum d'oscillation, plus grande suppression du taux d'événements pour ces neutrinos

> Autre physique

- Géoneutrinos
- Désintégration des nucléons
- Détection de supernova
- Neutrinos solaires

Phase neutrinos solaires

Neutrinos solaires ⁷**Be :**

- Aucune mesure en temps réel
- Incertitude expérimentale de 40% sur le flux
- 10% \rightarrow améliore précision facteur 4 sur ⁷Be, 2.5 sur pp

Affiner compréhension du soleil

Peu de retombée sur les paramètres d'oscillation

Pas de coincidence → nécessite une intense purification du BF basse E

Bruit de fond basse énergie

Bruit de fond	Contamination	Réduction	Purification
²³⁸ U	3.5x10 ⁻¹⁸ g/g	ОК	
²³² Th	5.2x10 ⁻¹⁷ g/g	ОК	
⁸⁵ Kr	0.7 Bq / m ³	10 ⁻⁶	Distillation + tour purge
⁴⁰ K	1.9x10 ⁻¹⁶ g/g	0.03	Distillation
²¹⁰ Pb	~ 10 ⁻²⁰ g/g	10 ⁻⁵	Distillation + prévention Rn

Principe de la distillation

Petit appareillage de pré-tests : compréhension du procédé, propriétés optiques du SL, mesures préliminaires des efficacités

Gros appareillage de test : mesure des efficacités

Propriété du SL après distillation

SL (PC + Dod + PPO) après distillation individuelle présente les même propriétés qu'avant distillation

Longueur d'atténuation L (m)

SL	L(365 nm)	L(436 nm)
Origine	1.4 ± 0.5	12.7 ± 0.4
Distillé	1.0 ± 0.3	11.2 ± 0.4

> Quantité de lumière (charge ADC Q - source ¹³⁷Cs)

SL	Q[ch]
Origine	1392 ± 4
Distillé	1401 ± 7

Efficacité de la distillation Résultats préliminaires (sans PPO)

Purge des gaz nobles Quel gaz utiliser ?

Résultats obtenus par bubbling

- Différentes taille de bulles (trous 1mm – 10µm)
- Différentes géométries
- Différents flux
- → $N_2 \sim 2$ fois plus efficace que Ne (tests effectués sur Kr, Ar, Xe) → He dangereux pour PMT

 \sim N₂

Tour de purge des gaz nobles

Tour de tests

En fin de chaîne pour éliminer les émanations externes (Kr, Rn)

1 module

Système final de purification

≻ LS : 2 m3 / h

- Distillation pour éliminer ²¹⁰Pb (+ ⁴⁰K, ³⁹Ar, ⁸⁵Kr, ²²²Rn)
 - 2 ou 3 tours (PC Dod, PPO)
 - Chauffage (efficacité purification Pb x 3 5) ⇒ 10⁻⁵ réalisable
- > Absorption ? Réduction ~ 50% mais indépendante de distillation
- N2 purge pour éliminer gaz nobles (⁸⁵Kr, ³⁹Ar, ²²²Rn) : 40 m3 / h

Nouveaux modules en cours de construction \rightarrow évaluer le nombre final nécessaire

Radon free air

day(February)

10

Système final de purification

Résultats attendus

Précision flux v ⁷Be : 5 %

Résumé

Les résultats de KamLAND montrent une disparition des antineutrinos réacteurs à 99.998% CL et une distorsion spectrale à 99.6% CL

On est entré depuis peu dans une ère de mesure de précision des paramètres d'oscillation LMA \rightarrow 1 valeur des paramètres

Les résultats réacteurs vont continuer à s'améliorer

Les premiers résultats des tests de purification en vue de la phase solaire, sont très encourageants. Les specifications sont atteignables et permettront une mesure du flux des v_e 7Be avec une précision de 5-10%