Mesure de la production de jets dans l'expérience DØ

Jean-Laurent Agram GRPHE Mulhouse-Strasbourg

- Le Tevatron, le détecteur DØ
- Les jets dans le détecteur
- Ia mesure de la section efficace inclusive
- Ies autres sections efficaces

Tevatron : DØ et CDF

Luminosité du Tevatron

- Le Tevatron fonctionne bien, notamment le recycleur de pbar
- efficacité de prise de données > 80%
- $\sim 600 \text{ pb}^{-1} \text{ sur bandes}$
- beaucoup de données seront encore prises avant le début du LHC

Le détecteur DØ

Nouvelle électronique et nouveau système de déclenchement pour Run II

Le détecteur central

Run II :

• Silicon Microstrip Tracker : détection des vertex détecteurs silicium à pistes ; tonneaux + disques

- Central Fiber Tracker : fibres scintillantes, dans le sens du faisceau
- o Solénoïde 2 Tesla
- Détecteurs de pieds de gerbe : central et avant; détection de traces et calorimétrie absorbeur en Pb + bandes de scintillateurs

Le calorimètre

• Calorimètre à Argon liquide avec absorbeur en U, Cu, acier <u>Ar</u>

 formé d'une partie centrale et de 2 bouchons, bonne herméticité, uniformité et couverture |η|<4.5

- Structure en tours
- granularité fine: $\Delta \phi \times \Delta \eta = 0.1 \times 0.1$
- compensation: $e/\pi \sim 1$

région inter-cryostat:
 ~ 0.8<|η|<1.5

• 3 couches : EM, FH, CH

• bonne résolution: Em
$$\frac{\sigma_E}{E} = 0.007 \oplus \frac{0.204}{\sqrt{E}} \oplus \frac{0.16}{E}$$

Détection des jets, électrons, photons

Les jets dans le détecteur

- Signature expérimentale des partons émis lors d'une interaction de haute énergie
 - ♦ Définition à 3 niveaux:
 - émission des partons
 - fragmentation, formation de hadrons (π ,K)
 - dépôt d'énergie dans le calorimètre, mesuré dans les tours

♦ Algorithme du cône : reconstruction des jets

♦ Correction de l'énergie des jets

L'algorithme du cône du Run II

- ♦ algorithme itératif
- \diamond cône de taille fixe R=0.7 dans l'espace (y, φ)
- ♦ points de départ : direction des tours dont ET > 0.5 GeV
- ♦ additionne les tours (quadri-vecteurs) dans le cône autour de cette direction: $P = (E, \vec{p}) = \sum (E^i, p^i_x, p^i_y, p^i_z)$

♦ réitère jusqu'à convergence

c'est la rapidité y qui est utilisée

 $R = \sqrt{\Delta y^2 + \Delta \Phi^2}$

et non la pseudo-rapidité η

- ♦ utilise les "midpoints" comme points de départ supplémentaires
 - → insensibilité à l'emission de gluon soft
- fusion/séparation des jets si superposition (>50%)

Correction de l'énergie des jets

Rjet

 correction entre l'énergie reconstruite dans le détecteur et l'énergie des particules entrant dans celui-ci

Eptcl = (Edet - O) / Rjet . S

- ♦ O <u>offset</u> : corrige l'énergie déposée dans le cône qui ne provient pas de l'interaction ppbar
 - mesuré par la densité d'énergie transverse moyenne dans événements sans processus physique dur
- Rjet <u>réponse</u> : corrige la réponse du calorimètre aux particules formant le jet
 mesuré par l'équilibre de l'énergie transverse dans évts γ+jet
- S <u>showering</u> : corrige de l'énergie dissipée hors du cône du jet lors du développement de la gerbe

Jet Energy scale (JES)

Eptcl / Edet

- \diamond Correction en énergie des jets en fonction de η et p_T
- \diamond section efficace p_T : 80–600 GeV ; η : 0–2.4
- Région particulière : l'intercryostat ICR

Mesure de la section efficace inclusive des jets

- Intérêt de la mesure : PDF, NP
- Etapes de la mesure
- Comparaison avec la théorie

Intérêt de la mesure

- ♦ Section efficace <=> taux de production
- grandeur observable permettant de tester la théorie QCD
- Section efficace inclusive : au 1 jet dans l'état final

Se calcule :
$$\sigma(p\bar{p} \rightarrow jet + X) = \sum_{a,b,c} \int_{0}^{1} \int_{0}^{1} f_{a/p}(x_p) \hat{\sigma}(ab \rightarrow c + X) f_{b/\bar{p}}(x_{\bar{p}}) dx_p dx_{\bar{p}}$$

densité de partons dans p section efficace du sous-processus (calculable en pQCD)
Permet de tester les PDFs
PDF : fonction de distribution des partons (q, \vec{q}, g)
 (ab, c, p)
 (ab, c, p)
 $p = \int_{p}^{p} \int_{residus}^{residus} \int_{residus}^{1} \int_{residus}^{1} f_{a/p}(x_p) \hat{\sigma}(ab \rightarrow c + X) f_{b/\bar{p}}(x_{\bar{p}}) dx_p dx_{\bar{p}} dx_p dx_{\bar{p}}$
 (ab, c, p)
 $f_{a/p}(x_p)$

Grenoble - 28 avril 2005

Les PDF

Fonctions de Distribution des Partons

- PDF <=> probabilité d'interagir avec un parton i portant une fraction d'impulsion x du proton
- Détermination expérimentale par des analyses globales de différentes expériences
- surtout DIS diffusion profondément inélastique
- reste des incertitudes importantes sur PDF du gluon à grand x

Jean-Laurent Agram

Intérêt de la mesure au Run II

- \diamond Sensibilité de la section efficace à la PDF du gluon à grand x, surtout à grand p_T et grande rapidité
- ♦ Intérêt de mesurer la section efficace dans ces domaines
- Run II : augmentation de l'énergie -> augmentation de la section efficace, surtout à grande impulsion transverse
 - augmentation de la luminosité

Intérêt de la mesure II

- Excès à grand pT pourraient également être dus à une sous-structure des quarks ou des effets au-delà du Modèle Standard
- Au Run I, la mesure de CDF montre un excès notoire contrairement à celle de DØ, excès expliqué en partie par l'augmentation de la PDF du gluon à grand x

Section efficace inclusive des jets

Formule principale :

$$igg| iggl(rac{d\sigma}{d p_T \, d y} iggr) = rac{N_{jet}}{\mathcal{L}} \, rac{1}{\epsilon_{eff}} \, C_{unsm} \, rac{1}{\Delta p_T \, \Delta y}$$

Njet nombre de jets après toutes les coupures

L luminosité

Ceff produit des efficacités sur les coupures de sélection des événements et des jets

Cunsm correction due à l'unsmearing (résolution en p_T)

 $\Delta \mathbf{p}_{\mathbf{T}}$ largeur du bin en $\mathbf{p}_{\mathbf{T}}$

 Δy largeur du bin en rapidité, égale à 0.4

Triggers et leur efficacité

Section efficace brute : Njet/Lumi

4 triggers avec des seuils de 25, 45, 65 et 95 GeV

- Détermination des "seuils d'efficacité" des triggers
- ♦ Trigger 65 GeV efficace avant celui de 95 GeV
- rapport du nombre de jets des 2 triggers en fonction pT <=> courbe de turn-on
- seuil d'efficacité : 99% du maximum de la courbe, obtenu par ajustement

Sélections des événements

Coupures de sélection des événements :

au - 1 vertex primaire, avec 3 traces pointant vers celui-ci
pour s'assurer de la bonne qualité de celui-ci

♦ |Zvtx| < 30 cm</p>

• vertex proche centre du détecteur, meilleure reconstruction

\diamond MET < 0.7 p_T du jet principal

 pour éliminer les événements cosmiques de signature semblable à un jet, avec une grande MET

Sélection des jets

Coupures de sélection des jets :

- ♦ Fraction hadronique extérieure CHF : CHF < 0.4</p>
 - effets de cellules chaude, couche bruyante
- ♦ Fraction électromagnétique EMF : 0.05 < EMF < 0.95</p>
 - EMF < 0.95 , rejette objets EM reconstruits par l'algorithme
- ♦ Confirmation au niveau L1 :
 - confirmation de l'existence du jet au niveau L1 du trigger, en évaluant la concentration de l'énergie du jet

Efficacité des coupures de l'ordre de 98%

Région Inter-Cryostat

 $0.8 < |\eta| < 1.5$

Coupures sur CHF et EMF ne peuvent pas être appliquées dans cette région (géométrie différente)

→ La section efficace n'est pas mesurée dans cette région

η x10

Déconvolution de la résolution

 corrige la section efficace mesurée de l'effet du détecteur : résolution en pT, résolutions en η et φ négligées

- pour passer de la distribution mesurée à la distribution originelle , et la comparer aux prédictions théoriques
- pas d'utilisation de Monte-Carlo, mais d'une fonction "Ansatz" décrivant l'allure de la section efficace
- ♦ Méthode :

Déconvolution de la résolution

$$C_{unsm} = \frac{F_{Ansatz} \operatorname{convoluée}}{F_{Ansatz}}$$

- ♦ Erreurs systématiques estimées en utilisant :
 - plusieurs fonctions Ansatz
 - différentes résolutions (effets de la coupure sur la position du vertex, de la position des 2 jets)

Erreurs systématiques

- ♦ Erreurs systématiques prises en compte :
 - incertitudes sur la correction de l'énergie des jets (JES), erreur dominante (surtout à grande rapidité)
 - incertitudes sur l'efficacité des triggers
 - incertitudes sur la résolution en pT et la déconvolution
 - incertitudes sur les efficacités dues aux coupures de sélection des événements et des jets
- Section efficace recalculée pour chaque correction majorée de ses erreurs
- incertitudes sur la détermination de la luminosité : 6.5%

Résultats

♦ prédictions NLO

- prédictions théoriques calculées au NLO avec NLOJET++
- il génère des évts avec des partons dans l'état final
- en utilisant la paramétrisation CTEQ6.1M des fonctions de structure
- paramètre Rsep=1.3, fusion au niveau des partons $R1,2 < Rsep.Rcone \rightarrow un seul jet$
- échelle de renormalisation et factorisation : $\mu r = \mu f = E_T max / 2$
- ♦ résultat des intervalles centraux très proches

Comparaison avec la théorie

Rapport données / théorie

|y| < 0.4

0.4 < |y| < 0.8

bon accord, mais erreurs expérimentales encore trop grandes pour apporter des contraintes sur les PDF

Grenoble - 28 avril 2005

2.0 < |y| < 2.4

Résultat Moriond 05

Rapport données / théorie

- ♦ 380 pb⁻¹
- Nouvelle version JES (plus juste, mais erreur plus grandes)
- Prise en compte de la variation de la largeur de la distribution z du vertex en fonction de la luminosité instantannée

CDF Run II Data, √s = 1.96 TeV

177 $pb^{\mbox{--}1}$, 0.1 < | η | < 0.7

Les autres sections efficaces

- Le spectre en masse des dijets
- La décorrélation en $\Delta \phi$ (entre les jets)

Spectre en masse des dijets

• région centrale |y|< 0.5, ~ 143 pb⁻¹ de données

- accord avec les prédictions NLO au vu des incertitudes
- JES est la principale source d'erreur systématique

Décorrélation en $\Delta \phi$

sensiblité réduite à JES

- production de 3 jets au NLO pQCD:
 - radiation soft → petite décorrelation ΔΦ1,2 ~ π (divergence au LO)
 - radiation hard (grand k_T)→ grande décorrelation

 $\Delta \Phi_{1,2} < \pi$

- distribution ΔΦ est sensible au ordre élevés de radiation, sans mesurer explicitement le 3^e ou 4^e jet
- Observable: $\frac{1}{\sigma_{dijet}} \cdot \frac{d\sigma_{dijet}}{d\Delta\phi_{dijet}}$ section efficace différentielle normalisée
 - 4 bins en pT du leading jet , pour les jets centraux lyl< 0.5

iet 2

iet 3

PRL

jet 1

Décorrélation en $\Delta \varphi$

- 2→2 LO pQCD, teste processus de radiation:
 - 3^e ou 4^e jets générés par gerbe de partons (phénomenologique)
- HERWIG 6.505
 - décrit bien les données, même $\Delta \phi \sim \pi$
- PYTHIA 6.223
 - mauvaise description avec les paramètres par défaut
 - changement du paramètre gérant l'Initial State Radiation PARP(67)=1.0→4.0
 - améliore la description
- permet d'ajuster les générateurs Monte-Carlo important pour LHC

Résumé

- Moyens de détection et de reconstruction des jets
- Tests de QCD dans des domaines cinématiques inexplorés (jets de grands pT), nécessité de diminuer les erreurs expérimentales (JES)

bientôt première publi QCD pour DØ Run II