Lattice QCD: from model to theory of strong interactions

Progress in unquenched simulations

Luigi Del Debbio

luigi.del.debbio@cern.ch

CERN-TH

Unquenched QCD, Grenoble 4/05 - p. 1/??

The QCD lagrangian

SU(3) gauge theory, matter in the fundamental representation

$$\mathcal{L} = -\frac{1}{4}G^2 + \bar{\psi}(D+m)\psi$$

large body of data with few params: 1 gauge coupling, quark masses

Asymptotically free:

[S. Eidelman et al., Phys. Lett. B592, 1 (2004)]

Running coupling

$$\alpha_s(\mu) = \frac{4\pi}{\beta_0 \log(\mu^2/\Lambda^2)} \left[1 + \ldots\right]$$

[Gross,Wilczek,Politzer 73]

At low-energy NP effects set in

NP effects

To study QFT beyond the usual framework of pert theory

non-perturbative IR dynamics

- (i) confinement and hadron spectrum (quark masses)

 → to validate QCD as the theory of strong interactions
- (ii) NP effects in SM phenomenology (hadronic matrix elements)

 → to relate parameters of the SM to exp data
- (iii) beyond QCD, new strong dynamics

Incorporate NP effects in models (symmetries, condensates, large N_c)

OR

quantitative NP tool to compute field correlators

Plan of the talk

- SM phenomenology: a few examples
 - o masses and decay constants
 - form factors
 - $^{\circ}$ *B* parameters
- Iattice QCD: a NP definition of QCD
 - lattice regularization
 - $^{\circ}$ choice of the action
- simulating lattice QCD
 - Monte Carlo methods
 - o fermionic determinant
- quenched results
- unquenched simulations
 - algorithmic issues
 - Schwarz algorithm preliminary results
- perspectives

A simple example

Masses and decay constants

$$\begin{cases} M_{\rm PS} = E_{\rm PS}(\vec{p} = 0) \\ iF_{\rm PS}p_{\mu} = \langle 0|A_{\mu}(0)|\pi(p) \rangle \end{cases}$$

Extracted from a 2-pt correlator:

$$C_2(t,\vec{p}) = \int_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \langle \phi_1(t,\vec{x}) \phi_2^{\dagger}(0) \rangle$$

Inserting a complete set of states:

$$C_2(t, \vec{p}) = \sum_{S} e^{-E_S(\vec{p})t} \langle 0|\phi_1(0)|S(\vec{p})\rangle \, \langle S(\vec{p})|\phi_2^{\dagger}(0)|0\rangle$$

A simple example

Masses and decay constants

$$\begin{cases} M_{\rm PS} = E_{\rm PS}(\vec{p} = 0) \\ iF_{\rm PS}p_{\mu} = \langle 0|A_{\mu}(0)|\pi(p) \rangle \end{cases}$$

Extracted from a 2-pt correlator:

$$C_2(t,\vec{p}) = \int_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \langle \phi_1(t,\vec{x}) \phi_2^{\dagger}(0) \rangle$$

Inserting a complete set of states:

$$C_2(t,\vec{p}) = \sum_{S} e^{-E_S(\vec{p})t} \langle 0|\phi_1(0)|S(\vec{p})\rangle \langle S(\vec{p})|\phi_2^{\dagger}(0)|0\rangle$$

eg choose $\phi_1 = \bar{\psi}\gamma_4\gamma_5\psi$, and $\phi_2 = \bar{\psi}\gamma_5\psi$; then at large Euclidean time *t*:

$$C_2(t, \vec{p}) = e^{-E_{\rm PS}(\vec{p})t} F_{\rm PS} E_{\rm PS}(\vec{p})$$

Tr $[\Gamma_1 S(x,0) \Gamma_2 S(0,x)]$

A simple example

Masses and decay constants

$$\begin{cases} M_{\rm PS} = E_{\rm PS}(\vec{p} = 0) \\ iF_{\rm PS}p_{\mu} = \langle 0 | A_{\mu}(0) | \pi(p) \rangle \end{cases}$$

Extracted from a 2-pt correlator:

$$C_2(t,\vec{p}) = \int_{\vec{x}} e^{i\vec{p}\cdot\vec{x}} \langle \phi_1(t,\vec{x}) \phi_2^{\dagger}(0) \rangle$$

Inserting a complete set of states:

$$C_2(t, \vec{p}) = \sum_{S} e^{-E_S(\vec{p})t} \langle 0|\phi_1(0)|S(\vec{p})\rangle \, \langle S(\vec{p})|\phi_2^{\dagger}(0)|0\rangle$$

eg choose $\phi_1 = \bar{\psi}\gamma_4\gamma_5\psi$, and $\phi_2 = \bar{\psi}\gamma_5\psi$; then at large Euclidean time t:

$$C_2(t,\vec{p}) = e^{-E_{\rm PS}(\vec{p})t} F_{\rm PS}E_{\rm PS}(\vec{p})$$

SM phenomenology

Semi-leptonic *B* decays:

$$\frac{d\Gamma}{d\Phi} = [\text{kin.factor}] |V_{ub}|^2 [\text{NP}]$$
$$\langle \pi | V^{\mu} | B \rangle = f_+(q^2)(p+p')^{\mu} + f_-(q^2)(p-p')^{\mu}$$

 $K - \bar{K}$ mixing:

$$\epsilon_K = [\text{kin.factor}] \operatorname{Re} \left(V_{cs}^* V_{cd} \right) \operatorname{Im} \left(V_{ts}^* V_{td} \right) [\text{NP}]$$

$$\langle \bar{K} | Q(\Delta S = 2) | K \rangle = \frac{8}{3} B_K F_K^2 M_K^2$$

 $B - \overline{B}$ mixing:

$$\Delta M_s / \Delta M_d = \left[(1 - \bar{\rho})^2 + \bar{\eta}^2 \right] \text{ [NP]}$$
$$\boldsymbol{\xi}^2 = F_{B_s}^2 B_{B_s} / F_{B_d}^2 B_{B_d}$$

Unitarity triangle (1)

Stringent test of the SM + window on new physics

Unitarity triangle (2)

[UTFit Collaboration, http://www.utfit.org]

• masses and CKM couplings are input values for physics BSM

Lattice formulation

evaluated numerically

First principles calculation

Accuracy of the numerical evaluation is limited by:

- statistical errors
- systematic errors

To have a quantitative NP tool:

- (a) large computers
- (b) finite-volume effects
- (c) continuum limit $a \rightarrow 0$, at fixed La
- (d) renormalization
- (e) quenched approximation
- (f) fermion masses ($m_q \rightarrow 0$)
- (g) symmetry breaking due to regularization

Witten-Veneziano mechanism

• The WV formula:

$$m_{\eta'}^2 = \frac{2N_f}{F_\pi^2} \chi \; ,$$

[Veneziano 79,Witten 79]

• Using GW Dirac operator:

$$q(x) = -\frac{\bar{a}}{2a} \operatorname{Tr} [\gamma_5 D(x, x)] ,$$

$$\chi = \frac{\langle Q^2 \rangle}{V}$$

[Hasenfratz et al 98 - Giusti et al 01]

• No power divergencies if GW fermions are used

[Giusti et al 04, Luscher 04]

[Del Debbio et al 04]

Finite-volume effects

Finite volume shifts can be important

[Lüscher 86 - Colangelo et al 04 - Becirevic 04]

$$R_{M_{\pi}} = (M_{\pi}(L) - M_{\pi})/M_{\pi}$$

- effect of pion loops
- computed in ChPT (no new params)
- uncertainty estimates
- few % effects

Fermionic action

dynamics is determined by the lattice action

$$S(U,\psi,\bar{\psi}) \longrightarrow -\frac{1}{4}G^2 + \bar{\psi}(D+m)\psi + O(a)$$

•	gauge symmetry	•	chiral symmetry
	flavour symmetry	•	locality
			1

renormalization

improvement

Different discretizations (gauge term + fermion term):

• Wilson fermions

$$S_F = \frac{1}{2a} \bar{\psi}(x) \left[U_\mu(x) \gamma_\mu \psi(x+\mu) - U_\mu^{\dagger}(x-\mu) \gamma_\mu \psi(x-\mu) \right]$$

symmetry-breaking term to eliminate doublers

Irrelevant operators can be added to improve the convergence to the continuum limit

Fermionic action

dynamics is determined by the lattice action

$$S(U,\psi,\bar{\psi}) \longrightarrow -\frac{1}{4}G^2 + \bar{\psi}(D+m)\psi + O(a)$$

- gauge symmetry
 flavour symmetry
 chiral symmetry
 locality
- renormalization

• improvement

Different discretizations (gauge term + fermion term):

• Staggered fermions

$$S_F = \frac{1}{2a} \bar{\chi}(x) \eta_{\mu}(x) \left[U_{\mu}(x) \chi(x+\mu) - U_{\mu}^{\dagger}(x-\mu) \chi(x-\mu) \right]$$

four tastes of quarks \rightarrow square-root trick

[Wingate 04]

Fermionic action

dynamics is determined by the lattice action

$$S(U,\psi,\bar{\psi}) \longrightarrow -\frac{1}{4}G^2 + \bar{\psi}(D+m)\psi + O(a)$$

- gauge symmetry
 flavour symmetry
 chiral symmetry
 locality
- renormalization

• improvement

Different discretizations (gauge term + fermion term):

• Ginsparg-Wilson fermions

 $\{\gamma_5, D\} = a D\gamma_5 D$ $D = 1 + \gamma_5 \epsilon(\gamma_5 D_w)$ Domain Wall fermions

computationally expensive for dynamical simulations

[BNL 04 – Kennedy 04]

Simulating lattice QCD

Expectation values are computed as:

$$\langle O \rangle = Z^{-1} \int \mathcal{D}\phi \, e^{-S(\phi)} \, O(\phi) = \frac{1}{N_{\text{conf}}} \sum_k O(\phi_k)$$

 $p(\phi) \propto e^{-S(\phi)}$

by generating an ergodic Markov chain, detailed balance:

$$p(\phi) P(\phi \to \phi') = p(\phi')P(\phi' \to \phi)$$

Integrating out the Grassman variables:

$$\langle O \rangle = \int \mathcal{D}U \, e^{-S_G} \, (\det D)^{N_f} \, \langle O \rangle_F$$

Gluonic background is generated with an effective action:

$$S_{\text{eff}} = S_G - \frac{N_f}{2} \log \det Q, \quad Q = D^{\dagger} D$$

Simulating lattice QCD

Expectation values are computed as:

$$\langle O \rangle = Z^{-1} \int \mathcal{D}\phi \, e^{-S(\phi)} \, O(\phi) = \frac{1}{N_{\text{conf}}} \sum_k O(\phi_k)$$

 $p(\phi) \propto e^{-S(\phi)}$

by generating an ergodic Markov chain, detailed balance:

$$p(\phi) P(\phi \to \phi') = p(\phi') P(\phi' \to \phi)$$

Integrating out the Grassman variables:

$$\langle O \rangle = \int \mathcal{D}U \, e^{-S_G} \, (\det D)^{N_f} \, \langle O \rangle_F$$

Introducing pseudofermion fields for $N_f = 2$:

$$\langle O \rangle = \int \mathcal{D}U \mathcal{D}\phi \mathcal{D}\phi^* \exp[-S_G - (D^{-1}\phi, D^{-1}\phi)] \langle O \rangle_F$$

Quenched approximation

Hybrid Monte Carlo (1)

Including the fermionic determinant:

$$Z = \int \mathcal{D}U\mathcal{D}\phi\mathcal{D}\phi^* \exp[-S_G - \phi^*Q^{-1}\phi]$$
$$= \int \mathcal{D}\Pi\mathcal{D}U\mathcal{D}\phi\mathcal{D}\phi^* \exp[-\frac{1}{2}(\Pi,\Pi) - S_G - (D^{-1}\phi, D^{-1}\phi)]$$

Molecular dynamics evolution:

$$\frac{d}{dt}\Pi(x,\mu) = -\frac{\delta\mathcal{H}}{\delta U(x,\mu)} = \sum_{k} F_k(x,\mu)$$
$$\frac{d}{dt}U(x,\mu) = \Pi(x,\mu)U(x,\mu)$$

Performed numerically through discrete leapfrog integration

Metropolis acceptance test at the end of the evolution

Hybrid Monte Carlo (1)

Including the fermionic determinant:

$$Z = \int \mathcal{D}U\mathcal{D}\phi\mathcal{D}\phi^* \exp[-S_G - \phi^*Q^{-1}\phi]$$
$$= \int \mathcal{D}\Pi\mathcal{D}U\mathcal{D}\phi\mathcal{D}\phi^* \exp[-\frac{1}{2}(\Pi,\Pi) - S_G - (D^{-1}\phi, D^{-1}\phi)]$$

Preconditioned molecular dynamics:

$$\det D = \det R_1 \dots \det R_n$$

yields:

$$(\omega, F_0) = \delta_{\omega} S_G,$$

$$(\omega, F_k) = 2\operatorname{Re}\left(R_k^{-1}\phi_k, \delta_{\omega} R_k^{-1}\phi_k\right), \quad k = 1, \dots, n$$

for all infinitesimal variations of the gauge field:

$$\delta_{\omega}U(x,\mu) = \omega(x,\mu)U(x,\mu)$$

HMC (2)

- cost of the inversion dictated by the small eigenvalues \Rightarrow more expensive as $m_q \rightarrow 0, V \rightarrow \infty$
- time-step in the classical evolution dictated by the magnitude of the forces

$$\epsilon_k ||F_k|| \simeq \text{const}$$

- chiral limit requires small a: $O(a/m_{\pi}^2)$ lattice artefacts appear
- total cost with Wilson/stag fermions:

$$TFlop \times yrs = 0.7 \left(\frac{N_{conf}}{1000}\right) \left(\frac{L_s \times a}{3fm}\right)^5 \left(\frac{L_t}{2L_s}\right) \left(\frac{0.6}{m_\pi/m_\rho}\right)^6 \left(\frac{0.1fm}{a}\right)^7$$
$$TFlop \times yrs = 1.31 \left(\frac{N_{conf}}{1000}\right) \left(\frac{L_s \times a}{3fm}\right)^4 \left(\frac{L_t}{2L_s}\right) \left(\frac{0.2}{m/m_s}\right)^{2.5} \left(\frac{0.1fm}{a}\right)^7$$

[Ukawa 02 - Gottlieb 02]

Current simulations

Schwarz preconditioning

Design the algorithm using knowledge of the physical system

Domain decomposition

$$D = D_{\Omega} + D_{\Omega^*} + D_{\partial\Omega} + D_{\partial\Omega^*}$$

yields:

$$\det D = \prod \hat{D}_{\Lambda} \det \left\{ 1 - D_{\Omega}^{-1} D_{\partial \Omega} D_{\Omega^*}^{-1} D_{\partial \Omega^*} \right\}$$

- Schur complement only acts on $\partial \Omega^*$
- Block decoupling via active links; inner integration can be performed in parallel
- Hierarchical integration with different time-steps
- Block size $\sim 1 \text{fm}$, avoid small blocks in units of a

Schwarz preconditioning

Design the algorithm using knowledge of the physical system

Domain decomposition

$$D = D_{\Omega} + D_{\Omega^*} + D_{\partial\Omega} + D_{\partial\Omega^*}$$

yields:

$$\det D = \prod \hat{D}_{\Lambda} \det \left\{ 1 - D_{\Omega}^{-1} D_{\partial \Omega} D_{\Omega^*}^{-1} D_{\partial \Omega^*} \right\}$$

- Schur complement only acts on $\partial \Omega^*$
- Block decoupling via active links; inner integration can be performed in parallel
- Hierarchical integration with different time-steps
- Block size $\sim 1 \text{fm}$, avoid small blocks in units of a

Schwarz simulations

Lattice	κ	am	am_{π}
32×16^3	0.15750	0.0279(4)	0.298(5)
	0.15800	0.0154(4)	0.242(4)
	0.15825	0.0092(4)	0.209(7)
32×24^3	0.15750	0.0273(4)	0.280(3)
	0.15800	0.0143(3)	0.188(5)
	0.15825	0.0084(4)	0.153(4)

scale set by the sommer radius r_0 : a = 0.08 fm

Lattice	κ	m(MeV)	m_π (MeV)
64×32^3	0.15410	0.01936(9)	0.1965(8)
	0.15440	***	***
	0.15470	***	***
acele act by the commer radius as the 0.000 free			

scale set by the sommer radius r_0 : a = 0.06 fm

Lattice	κ	$ au_{ m int}[P]$	$ au_{ m int}[N_{ m GCR}]$
32×16^3	0.15750	68(25)	168(42)
	0.15800	32(7)	162(56)
	0.15825	57(18)	135(39)
32×24^3	0.15750	53(22)	144(51)
	0.15800	33(11)	122(36)
	0.15825	12(4)	22(6)

Simulation cost

Current simulations

PC Cluster

[Fermi Institute, Rome 04]

64 nodes: 200 GFlops sustained 2 lattice spacings, 2 fm lattices, 4 masses \approx 1 year

Preliminary results

[Del Debbio, Giusti, Lüscher, Petronzio, Tantalo]

Preliminary results

[Del Debbio, Giusti, Lüscher, Petronzio, Tantalo]

Preliminary results

[Del Debbio, Giusti, Lüscher, Petronzio, Tantalo]

Perspectives

"Convincing precision" for CKM studies

 $a = 0.06 \div 0.09 \text{fm}$ $m_{\pi} = 300 \text{MeV}$

 $L > 2.5 \mathrm{fm}$

Quantity	precision
F_{π}	1.8%
F_K/F_{π}	<1 %
$K \to \pi$	<1 %
B_K	5%
$F_B \sqrt{B_B}$	5%
ξ	3%
$B \to \pi$	7%
$B \to D$	2%

[Sharpe 04]

Perspectives

- unquenching is fundamental to eliminate systematic errors
- Iattice QCD: quantitative tool for NP physics
- dedicated algorithms + machines
- entering the age of "precision" full QCD simulations
- establish QCD as the theory of strong interactions
- precise determination of the SM parameters $[N_f = 3]$
- light dynamical quarks are the gateway to new strong dynamics