

Journée GDR MI2B - ARCHADE 10th November 2020

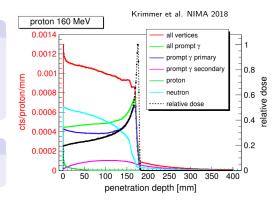
Ultra-Fast Timing for PG-based range monitoring in hadrontherapy

Sara Marcatili on behalf of the CLaRyS collaboration

LPSC, Univ. Grenoble Alpes, CNRS, Grenoble INP, Grenoble IP2I, CREATIS, Univ. Lyon, Univ. Claude Bernard Lyon 1, Villeurbanne Aix-Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France Centre Antoine Lacassagne, Nice

CREATIS

Range monitoring with prompt gammas

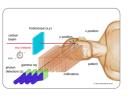

Prompt gammas (PG)

Emitted by nuclear de-excitation following NN collisions in the patient

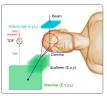
- nearly isotropic
- ullet 0 < E $_{\gamma}$ < 10 MeV
- ullet emission within $< 1~{
 m ps}$

Range monitoring principle

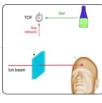
PG emission vertices are **spatially** and **temporally** correlated to hadron range

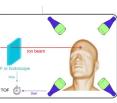

Drawback: low statistics!

A 160 MeV proton in water produces 0.05 PGs/proton (0.3 PGs/ 12 C at the same energy)


 $\rightarrow \mbox{ High detection efficiency detector needed}$

PG-based range monitoring in the CLaRyS collaboration


Multi-slit camera


Compton camera

PG timing

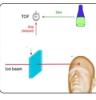
PGPI

- 1D
- physical collimation
- $\sim 10^{-4} \ \text{det. eff.}$
- real time

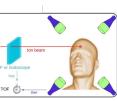
- 3D
- electronic collimation
- $\sim 10^{-4} \ \text{det. eff.}$
- iterative reconstruction

- 1D
- no collimation
- $\bullet \sim 10^{-3}$ det. eff.
- real time

- 1D/3D
- no collimation
- real time


PG-based range monitoring in the CLaRyS collaboration

Multi-slit camera


Compton camera

PG timing

PGPI

- 1D
- physical collimation
- $\sim 10^{-4} \text{ det. eff.}$
- real time

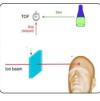
- 3D
- electronic collimation
- $\sim 10^{-4} \text{ det. eff.}$
- iterative reconstruction

- 1D
- no collimation
- $\bullet \sim 10^{-3}$ det. eff.
- real time

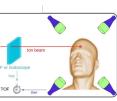
- 1D/3D
- no collimation
- real time

Hodoscope: a common tool for spatial and temporal tagging

- Existing prototype based on scintillating fibres: ~ 1 ns time resolution
- Diamond based hodoscope under development at LPSC: ≤ 100 ps time resolution


PG-based range monitoring in the CLaRyS collaboration

Multi-slit camera

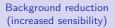

Compton camera

PG timing

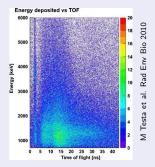
PGPI

- 1D
- physical collimation
- $\sim 10^{-4}$ det. eff.
- real time

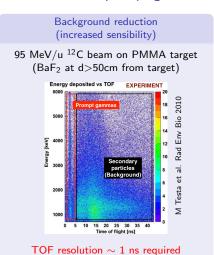
- 3D
- electronic collimation
- $\sim 10^{-4} \text{ det. eff.}$
- iterative reconstruction

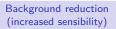

- 1D
- no collimation
- $\sim 10^{-3}$ det. eff.
- real time

- 1D/3D
- no collimation
- $\sim 10^{-3} \text{ det eff}$
- real time

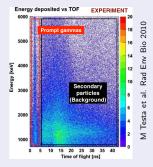

Hodoscope: a common tool for spatial and temporal tagging

talk by Gallin-Martel

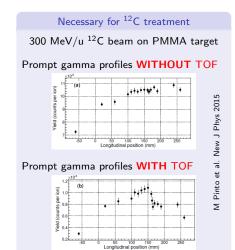

- Existing prototype based on scintillating fibres: ~ 1 ns time resolution
- Diamond based hodoscope under development at LPSC: ≤ 100 ps time resolution

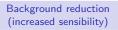


95 MeV/u 12 C beam on PMMA target (BaF₂ at d>50cm from target)

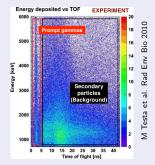


TOF resolution ~ 1 ns required

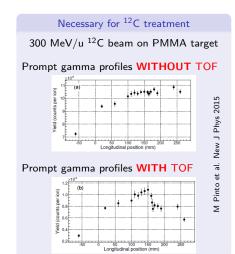




95 MeV/u 12 C beam on PMMA target (BaF $_2$ at d>50cm from target)



TOF resolution ~ 1 ns required



95 MeV/u 12 C beam on PMMA target (BaF $_2$ at d>50cm from target)

TOF resolution ~ 1 ns required

An external detector is necessary for multi-energy treatment (RF phase varies!).

Single hadron regime

Beam temporal structure

		synchrotron		cyclotron	synchro-cyclotron
		(CNAO, HIT)		(IBA, Varian)	(S2C2, IBA)
		ions C	Protons		
Intensité type (ions/s)		10^{7}	10 ⁹	10^{10}	$\sim 10^{10}$
Macrostructure	Période (s)	1 - 10		Ø	10^{-3}
Microstructure	Largeur paquet (ns)	20 - 50		0.5 - 2	8
	Période (ns)	100 - 200		10	16 (à l'extraction)
	Ions/paquet	2-5	200 - 500	200	4000

Carbontherapy (Synchrotron)

 \sim 30 ns bunch every 200 ns 10 ions/bunch \rightarrow lon tagging

Protontherapy (Cyclotron IBA/C230)

 \sim 2 ns bunch every 10 ns 200 p/bunch \rightarrow Bunch tagging

Single hadron regime

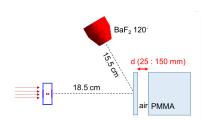
Beam temporal structure

		synchrotron (CNAO, HIT)		cyclotron (IBA, Varian)	synchro-cyclotron (S2C2, IBA)
		ions C	Protons		
Intensité type (ions/s)		10^{7}	10 ⁹	10^{10}	$\sim 10^{10}$
Macrostructure	Période (s)	1 - 10		Ø	10^{-3}
Microstructure	Largeur paquet (ns)	20 - 50		0.5 - 2	8
	Période (ns)	100 - 200		10	16 (à l'extraction)
	Ions/paquet	2-5	200 - 500	200	4000

Carbontherapy (Synchrotron)

 \sim 30 ns bunch every 200 ns 10 ions/bunch \rightarrow lon tagging

Protontherapy (Cyclotron IBA/C230)

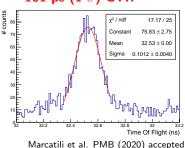

 \sim 2 ns bunch every 10 ns 200 p/bunch \rightarrow **Bunch tagging**

Reduction of beam intensity within the first (few) irradiation spot(s)

Dauvergne et al. Frontiers Physics (2020); 8; 434

PG Timing in single proton regime

.

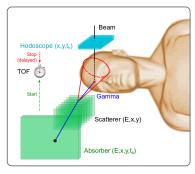

Exploit the system ultra-fast Coincidence Time Resolution to detect range variations induced by target heterogeneities

Aim:

Set-up: A variable thickness air cavity produces a shift in proton range

The measured time-shift correlates to the air cavity thickness

101 ps (1 σ) CTR

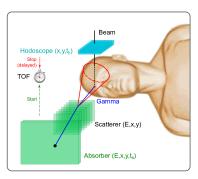


LaBr at 90 deg
 LaBr at 120 deg
 BaF2 at 120 deg

Target-target distance (mm)

1500

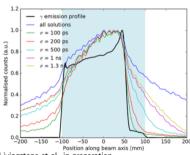
Line-cone reconstruction for Compton camera



Proposed solution

A 200 MeV proton travels at $\sim c/2$

A 100 ps TOF resolution allows determining the γ vertex within 1.5 cm

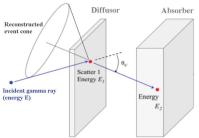

Line-cone reconstruction for Compton camera

Proposed solution

A 200 MeV proton travels at \sim c/2 A 100 ps TOF resolution allows determining the γ vertex within 1.5 cm

Reconstructed PG profile

Livingstone et al. in preparation

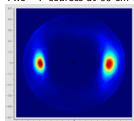

MC simulations

A precision of 2.30 ± 0.15 mm was achieved for 10^8 primary protons and a temporal resolution of 200 ps (rms).

Compton imaging becomes a REAL TIME technique!

TEMPORAL camera

Nuclear waste application:

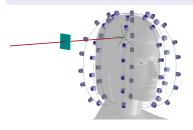

1CMPORAL:

Characteristics

- monolithic CeBr₃ read-out by SiPM matrices
- 3D vertex localisation
- 100 ps (rms) time resolution at 1 MeV

⇒ Compton Camera CLaRyS

Two ¹⁸F sources at 60 cm distance

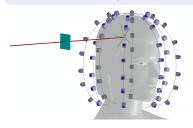


DAQTemp board for SiPM FE based on the PetiROC ASIC (readout based on the μTCA AMC40 board).

TIARA: a Time-of-flight Imaging ARrAy for hadrontherapy

Goal: 3D reconstruction of PG vertex distribution on event-by-event basis

Composed of \sim 30 detectors:


- ullet small size $\sim 1~\text{cm}^3$ (PG hit coordinates)
- fast (high CTR with hodoscope)
- high pixel detection efficiency (to compensate small size)

Pixel technology:

- Cherenkov radiator (PbF₂)
- SiPM photodetector

TIARA: a Time-of-flight Imaging ARrAy for hadrontherapy

Goal: 3D reconstruction of PG vertex distribution on event-by-event basis

Composed of \sim 30 detectors:

- small size $\sim 1~\text{cm}^3$ (PG hit coordinates)
- fast (high CTR with hodoscope)
- high pixel detection efficiency (to compensate small size)

Pixel technology:

- Cherenkov radiator (PbF₂)
- SiPM photodetector

1D reconstruction developed

Distal proton range shift sensitivity (at 2σ) obtained from MC simulations:

- 1 mm for 10⁸ protons and 100 ps (rms) CTR
- 2 mm for 109 protons and 1 ns (rms) CTR

Jacquet et al. in preparation

Air cavity thickness [cm]

Measured vs. actual shift

- The availability of ultra-fast, TOF-based, PG detection systems opens up a whole range of possibilities for increasing the sensitivity of on line treatment monitoring in hadrontherapy.
- Interest in ions heavier than protons to increase the system TOF resolution

Many original developments within the CLaRyS collaboration:

- Compton imaging reconstruction
- TEMPORAL camera
- TIARA
- but also, PGT, IVI, PGPI . . .

Current projects:

- CLaRyS-UFT (PCSI INCa/INSERM)
- TEMPORAL camera (ANR-ANDRA/PIA)
- TIARA (PCSI INCa/INSERM; IDEX-UGA)
- DIAMMONI (ANR-PRC)