Machine Learning in Particle Physics

Anja Butter

ITP, Universität Heidelberg

A structurally complete theory

The need for new physics

The need for new physics

Era of data

First principle based event generation

Choose arbitrary Lagrangian like

$$\begin{split} \mathcal{L}_{\text{eff}} &= \mathcal{L}_{\text{SM}} \\ &- \frac{\alpha_s}{8\pi} \frac{f_{GG}}{\Lambda^2} \phi^{\dagger} \phi \ G^a_{\mu\nu} G^{a\mu\nu} + \frac{f_{BB}}{\Lambda^2} \phi^{\dagger} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} \phi + \frac{f_{WW}}{\Lambda^2} \phi^{\dagger} \hat{W}_{\mu\nu} \hat{W}^{\mu\nu} \phi \\ &+ \frac{f_{\phi,2}}{\Lambda^2} \frac{1}{2} \partial^{\mu} \left(\phi^{\dagger} \phi \right) \partial_{\mu} \left(\phi^{\dagger} \phi \right) + \frac{f_{WWW}}{\Lambda^2} \operatorname{Tr} \left(\hat{W}_{\mu\nu} \hat{W}^{\nu\rho} \hat{W}^{\mu}_{\rho} \right) \\ &+ \frac{f_B}{\Lambda^2} (D_{\mu} \phi)^{\dagger} \hat{B}^{\mu\nu} (D_{\nu} \phi) + \frac{f_W}{\Lambda^2} (D_{\mu} \phi)^{\dagger} \hat{W}^{\mu\nu} (D_{\nu} \phi) \\ &+ \frac{f_{\tau} m_{\tau}}{\nu \Lambda^2} (\phi^{\dagger} \phi) (\bar{L}_3 \phi e_{R,3}) + \frac{f_b m_b}{\nu \Lambda^2} (\phi^{\dagger} \phi) (\bar{Q}_3 \phi d_{R,3}) + \frac{f_t m_t}{\nu \Lambda^2} (\phi^{\dagger} \phi) (\bar{Q}_3 \tilde{\phi} u_{R,3}) \end{split}$$

First principle based event generation

Precision simulations

[1807.11501] Cieri, Chen, Gehrmann, Glover, Huss

LPSC Grenoble

New physics is hidden

USING NEURAL NETWORKS TO IDENTIFY JETS

Leif LÖNNBLAD*, Carsten PETERSON** and Thorsteinn RÖGNVALDSSON***

Department of Theoretical Physics, University of Lund, Sölvegatan 14A, S-22362 Lund, Sweden

Received 29 June 1990

USING NEURAL NETWORKS TO IDENTIFY JETS

Leif LÖNNBLAD*, Carsten PETERSON ** and Thorsteinn RÖGNVALDSSON ***

Department of Theoretical Physics, University of Lund, Sölvegatan 14A, S-22362 Lund, Sweden

Received 29 June 1990

Citations per year

How can ML help increasing precision

- 1.0 Classification/Regression
 - \rightarrow Label data

minimize
$$L = (y_{true} - y_{output})^2$$

How can ML help increasing precision

- 1.0 Classification/Regression
 - \rightarrow Label data

minimize $L = (y_{true} - y_{output})^2$

How can ML help increasing precision

- 1.0 Classification/Regression
 - \rightarrow Label data

minimize $L = (y_{true} - y_{output})^2$

+ low level observables + efficient training

Why now? $\rightarrow \mathsf{GPUs}$

 \rightarrow new algorithms [convolutional networks]

LPSC Grenoble

First application - jet tagging

Convolutional network on W/QCD jet images

- $+\,$ Physics: theoretical and experimental control
- $+\,$ Straight forward from ML developments

[1511.05190] L. Oliveira, M. Kagan, L. Mackey, B. Nachman, A. Schwartzman

Top tagging with physics networks

- W \rightarrow top jets
- Lo(rentz) La(yer): Lorentz vectors → physics motivated objects

[1707.08966] AB, G. Kasieczka, T. Plehn, M. Russell

$$\tilde{k}_{j} \stackrel{\text{LoLa}}{\longrightarrow} \hat{k}_{j} = \begin{pmatrix} m^{2}(\tilde{k}_{j}) = \tilde{k}_{j,\mu} \ \eta^{\mu\nu} \ \tilde{k}_{j,\nu} \\ p_{T}(\tilde{k}_{j}) \\ w_{jm}^{(E)} \ E(\tilde{k}_{m}) \\ w_{jm}^{(d)} \ d_{jm}^{2} \end{pmatrix}$$

with
$$d_{jm}^2 = (ilde{k}_j - ilde{k}_m)_\mu \; \eta^{\mu
u} \; (ilde{k}_j - ilde{k}_m)_
u$$

Training yields:

 $\eta = \text{diag}(0.99 \pm 0.02, -1.01 \pm 0.01, -1.01 \pm 0.02, -0.99 \pm 0.02)$

LoLa vs Image

- Combine tracking & calorimeter information
- Improved performance for boosted jets
- Recent network: ParticleNet [1902.08570] H. Qu, L. Gouskos

Comparative top tagging study

[1707.08966] G. Kasieczka, et al.

- $\rightarrow\,$ Other applications: jet calibration, particle identification, ...
- \rightarrow Open questions: precision, uncertainties, visualization

Precision in forward simulations

- ML 2.0 Generative models
 - \rightarrow Can we simulate new data?

1. Generate phase space points

2. Calculate event weight

$$w_{event} = f(x_1, Q^2) f(x_2, Q^2) \times \mathcal{M}(x_1, x_2, p_1, \dots, p_n) \times J(p_i(r))^{-1}$$

3. Unweighting via importance sampling \rightarrow optimal for $w \approx 1$

... or training directly on event samples

Event generation

Generating 4-momenta

•	$Z > II$, $pp > jj$, $pp > t\bar{t}$ +decay
	[1901.00875] Otten et al. VAE & GAN
	[1901.05282] Hashemi et al. GAN
	[1903.02433] Di Sipio et al. GAN
	[1903.02556] Lin et al. GAN
	[1907.03764, 1912.08824] Butter et al. GAN
	[1912.02748] Martinez et al. GAN
	[2001.11103] Alanazi et al. GAN

Detector simulation

- Jet images
- Fast shower simulation in calorimeters

[1701.05927] de Oliveira et al. GAN [1705.02355, 1712.10321] Paganini et al. GAN [1802.03325, 1807.01954] Erdmann et al. GAN [1805.00850] Musella et al. GAN [ATL-SOFT-PUB-2018-001, ATLAS-SIM-2019-004, ATL-SOFT-PROC-2019-007] ATLAS VAE & GAN [1909.01359] Carazza and Dreyer GAN

[2005.05334] Buhmann et al. VAE

NO claim to completeness!

Generative Adversarial Networks

Discriminator

$$L_D = ig\langle -\log D(x)ig
angle_{x\sim P_{Truth}} + ig\langle -\log(1-D(x))ig
angle_{x\sim P_{Gen}}$$

Generator

$$L_G = \langle -\log D(x) \rangle_{x \sim P_{Gen}}$$

What is the statistical value of GANned events?

- Camel function
- Sample vs. GAN vs. 5 param.-fit

Evaluation on quantiles:

$$\mathsf{MSE}^* = \sum_{j=1}^{N_{\mathsf{quant}}} \left(p_j - rac{1}{N_{\mathsf{quant}}}
ight)^2$$

What is the statistical value of GANned events?

Camel function

Sample vs. GAN vs. 5 param.-fit

Evaluation on quantiles:

$$\mathsf{MSE}^* = \sum_{j=1}^{N_{\mathsf{quant}}} \left(p_j - rac{1}{N_{\mathsf{quant}}}
ight)^2$$

Sparser data \rightarrow bigger amplification

How to GAN LHC events

- $t\overline{t} \rightarrow 6$ quarks
- + Flat observables \checkmark
- + Narrow structures \rightarrow kernel loss \checkmark
- Systematic undershoot in tails [10-20% deviation]

Special features

Solution: MMD kernel

$$\mathsf{MMD}^{2}(P_{\mathcal{T}}, P_{\mathcal{G}}) = \left\langle k(x, x') \right\rangle_{x, x' \sim P_{\mathcal{T}}} + \left\langle k(y, y') \right\rangle_{y, y' \sim P_{\mathcal{G}}} - 2\left\langle k(x, y) \right\rangle_{x \sim P_{\mathcal{T}}, y \sim P_{\mathcal{G}}}$$

LPSC Grenoble

Reaching precision (preliminary)

- 1. Representation p_T, η, ϕ
- 2. Momentum conservation
- 3. Resolve $\log p_T$
- 4. Regularization: spectral norm
- 5. Batch information
- $\rightarrow~1\%$ precision \checkmark

Automization?

W + 2 jets

Negative events

- Generate high-dim. difference distributions
- Beat bin-induced uncertainty

 $\Delta_{B-S} > \max(\Delta_B, \Delta_S)$

- Applications:
 - Background subtraction, soft-collinear subtraction, ...

Generative background subtraction

- Training data:
 - $pp \rightarrow e^+e^-$
 - $pp \rightarrow \gamma \rightarrow e^+e^-$
- Generated events: Z-Pole + interference

Generative background subtraction

- Training data:
 - $pp \rightarrow e^+e^-$
 - $pp \rightarrow \gamma \rightarrow e^+e^-$
- Generated events: Z-Pole + interference

General Subtraction GAN

Training on weighted events (preliminary)

$$L_D = \left\langle -w \log D(x) \right\rangle_{x \sim P_{Truth}} + \left\langle -\log(1 - D(x))
ight
angle_{x \sim P_{Gen}}$$

Inverting a Markov process

Calibration

Unfold single event many times \rightarrow distribution

Fraction of events in quantile of unfolded distribution

Inverting the full event

We can use ML to ...

... exploit data in best possible way

... explore new opportunities in HEP

 \ldots improve analyses with optimized S vs B classification

... enable precision simulations in forward direction

... unfold high dimensions

... learn more about particle physics!

BACK UP

The GAN challenge

or Why do we need regularization?

Solutions: Additional loss or restricted network parameters

Amplification

Correlations

The subtraction loss function

- Standard GAN loss for each discriminator
- Differentiable function to count events of one type

$$f(c)=e^{-lpha(\max(c)^2-1)^{2eta}}\in [0,1] \qquad ext{for} \qquad 0\leq c_i\leq 1 \;.$$

• Reward clear class assignment

$$L_{G}^{(\text{class})} = \left(1 - \frac{1}{b}\sum_{c \in batch} f(c)\right)^{2}$$

Fix normalization

$$L_{G_i}^{(\text{norm})} = \left(\frac{\sum_{c \in C_i} f(c)}{\sum_{c \in C_B} f(c)} - \frac{\sigma_i}{\sigma_0}\right)^2$$