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Dark Matter

Compelling evidence (only gravitational) of non-luminous matter
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- 70% We know... We don’t know...
ar
Ll - its abundance - fundamental particle?
- presureless - Spin, mass?
- long-lived enough = - non-gravitational interactions?
- neutral enough - thermal relic?
. - when was it produced?
6 times more abundant )
than visible matter




* DM non-gravitational interactions?

>

¢ DM annihilating/decaying into SM particles?
(Gunn, Lee, Lerche, Schramm and Steigman
1978, Astrophys.J. 223, 1015)

D SM

(DM not mentioned explicitely here) D SM
DM indirect detection \J -

4 DM scattering off nuclei ? ¢ DM produced in particle collisions
(Goodman & Witten (Ellis, Frere, Hagelin, Kane, Petcov, Eﬁfstissutieeiier
1985, PhyS.ReV. D31, 3059) 19837 PhYS-Lett-B 132 436'442) first paper) g
DM direct detection (DM not mentioned explicitely here)

DM collider searches

¢ Axion DM experiments
(Sikivie, P., 1983,
Phys.Rev.Lett. 51, 1415.)

¢ DM self-interactions (Spergel and Steinhardt,
1999, Phys.Rev.Lett. 84, 3760-3763)

Axion searches
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Thermal vs. Non-thermal DM

...whether or not the DM particles have been in thermal equilibrium with the SM bath

At early times...

If thermal DM:
H < T(DM + DM — SM + SM) = I'(SM + SM — DM + DM)

H : expansion rate I' :reaction rate

If non-thermal DM:
I'(DM + DM — SM + SM) < H < I'(SM + SM — DM + DM)

At later times...

Abundance

I'(SM+SM — DM +DM) < H (thermal)

At the end of the day....

'« H ..soDM freezes- (in)

reheating
finishes



...t 1s mostly about couplings...
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dynamics is more complex, mix between freeze-in and freeze-out
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So what is 2005.06294 about?

Note: we work in the framework of a particular model
(up-philic scalar mediator, lighter than fermionic DM),
however the mechanism is pretty generic



“Sequential freeze-in”

[Hambye, Tytgat, Vandecasteele, Vanderheyden, 1008.09864]
[this work]

At the beginning... (assuming zero abundance of both mediator & DM)
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“Sequential freeze-in”
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B) mediator-dom. freeze-in (med. is thermal)
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C) mediator-dom. freeze-in (med. is not thermal)
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Mediator production

Boltzmann Equation i}[ fol =C|fs]

Liouville operator, dealing with enter
the expansion rate and gravity

collision term, where the reaction rates

[ : mediator’s distribution function

For FRW universe

E(9; — Hpdp)fo = Clfe] | D

For species in thermal eq., f has a known shape, completely

determined by the temperature and the energy

So it is convenient to integrate the Boltzmann
Eq. to get an Eq. for number density #
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When med. is not in eq., a priori (I) should be used
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Mediator production for DM

1 I — i
Sometimes in the literature it is assumed f d X f eq T=5Gey
so as to avoid solving (I)  (kinetic eq. approx.) ye=10
As for med. itself, this is far from correct —p- 0.1
If assuming MB distrib. for the SM particles E:_;
0.01}
2Mp1 7 DN e N\ e
Jo ~ 1 —exp [ Jv Pl (1—|—10g%)] .
feq p no thermal corrections
0.001r —— 2-2 only
----- MB statistics
----- - kinetic equilibrium

DM production from mediator: '~._ X , | |
0.001 0.01 0.1 1 10
I — X f (pl)f (p2 q~0.4xp|T
PP—rxX ¢ ¢ \

since 1M, > Mg
P1 + P2 should be sizeable mmp DM prod. is maximised for P1 > P2

Thus, as for DM is concerned, kinetic eq. approx. actually gives correct order of magnitude
[off by factor ~2 for low coupling gv |
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About thermal corrections

Since “freeze-in” was first proposed (Hall et al, 2009, although see McDonald 2001)
thermal corrections were neglected until few years ago

Here thermal corrections are a priori relevant, since DM production is out of eq.,
(so no washout of initial conditions) starting from very high temperatures

In finite-temperature QFT:
- particles acquire temperature-dependent masses
- interaction vertices are also temperature-dependent
- other effects apparently less relevant...

As for the mediator-production is concerned: SM .- ¢

- cross-section’s forward divergence regulated
by thermal masses at high momenta SM S SM

- Enhancement of med. production at low momenta
(soft phi), which is absent when no thermal corr. are included

As for DM production is concerned:
O(1) change in the abundance, wrt not considering such corrections
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Probes with Direct Detection
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Summary

- Sequential freeze-in is a recently discovered DM production regime
at work when g, > g,

- Interestingly, values of coupling combinations much smaller than
the standard freeze-in can still deliver good relic abundance

- Case of mediator out of equilibrium is very important, although a priori
technically challenging (still, some assumptions may give reasonable results)

- Thermal corrections are very important a priori, but do not change the order
of magnitude of the DM abundance

- Direct Detection experiments are able to probe a large part of the
parameter space of sequential freeze-in

Thanks!
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