

Beyond vanilla new physics at the LHC

PhD defense of Humberto Alonso Reyes González

Grenoble, France, 8 October 2020

General outline.

- Introduction.
- Constraining the Minimal Dirac Gaugino Model.
 - The model.
 - LHC limits on gluinos and squarks.
 - Constraining the electroweakino sector.
- Tools (Contributions to Les Houches 2019).
 - Determining the orthogonality of LHC analyses.
 - (Machine) Learning the cross sections of the IDM.
- Conclusion.

Introduction.

Why new physics?

Astrophysics and cosmology

- Dark Matter
- Dark energy
- Matter-antimatter asymmetry
- Neutrino masses

Intrinsic questions.

- The hierarchy problem
- Gauge coupling unification
- Strong CP problem
- Why three families?

Gravity

Where to go? Supersymmetry*

- In supersymmetry (SUSY), fermionic generators transform the spin of the fields by $\frac{1}{2}$.
- Thus, for each fermion there is a bosonic superpartner and viceversa.

- Only way to extend the Poincaré space-time symmetries.
- Natural solution to hierarchy problem.
- Unification of electroweak and strong forces.
- Can include Dark Matter candidates.
- Connection with quantum gravity.

*Other possibilities are: Extra dimensions, Multi-Higgs models, Axions,...

5

MOTIVATIONS:

The Large Hadron Collider.

New physics searches at LHC.

SUSY searches

SUSY theories have a rich phenomenology which inspire searches in multiple signal regions!

Is commonly assumed that they conserve R-parity

$$R = (-1)^{3(B-L)+2s}$$

As a consequence

- SUSY particles would always be pair produced at LHC .
- They cascade decay into the Lightest SUSY Particle LSP.
- The LSP is stable.
- If neutral, the LSP can be Dark Matter candidate.
- A neutral LSP leaves a missing energy E_T^{miss} signature.

→ SUSY would be observed as SM final states plus missing energy:

(Imposed for baryon B and lepton L number conservation.)

 $\begin{array}{c|c} & & & & \\ & & & & \\ & \tilde{q}_L & & \tilde{\chi}_2^0 & & \tilde{f} \end{array} \right)$

7

New physics searches at LHC.

LLP searches

- Long Lived Particles (LLP) are BSM particles with lifetimes >= of the order of the detector.
- They are realized in SUSY theories with approximate R-symmetry, models with quasi-degenerate mass spectra, in FIMP dark matter theories, etc.
- Impose new challenges for their observation.
- Distinctive signatures expected from those of SM.

Why beyond vanilla?

- ATLAS and CMS has an extensive program of searches for new physics.
- Experimental analyses are often optimized and interpreted for popular or 'vanilla' BSM models.

- However, there is a sea of proposed theories/scenarios for new physics,
- Many are non-minimal, less-known, not-thought-ofyet... theories that are not directly interpreted by LHC searches.
- We call them **beyond vanilla new physics**.
- The aim of the LHC reinterpretation framework is to be able to test any BSM theory against LHC results.
- A very active field with strong communication between theorists and experimenters.

Reinterpretation of LHC searches

Simplified model approach.

- Most LHC new physics searches present their results as upper limit and efficiency maps in the context of simplified model spectra (SMS).
- SMS results are relatively straightforward to reinterpret
- Direct comparison of $[\sigma \times \mathcal{B}]_{UL}$ of theory vs corresponding $[\sigma \times \mathcal{B}]_{UL}$ from exp.

Pros and cons:

Fast but more conservative. **My contribution:** SModelS' Interactive Plots Ma

SModelS' Interactive Plots Maker

Full recasting approach.

- Full event simulation with MC event generators followed by emulation of detector response.
- implementation of SRs of LHC analyses.
- Computation of expected signal efficiencies.

Pros and cons:

More precise but time consuming.
 My contribution:

Implementation of ATLAS 13TeV multijet (36/fb) search in MadAnalysis 5.

Constraining the Minimal Dirac Gaugino Model 1. *The model*

The MDGSSM model

- Most of SUSY searches at the LHC are optimized for the MSSM, where gauginos are Majorana particles.
- We can introduce Dirac gaugino states by adding a Weyl fermion in the adjoint representation of each gauge group. Embedded in a scalar S, triplet T and octet O superfields.

$$\mathcal{L}_{\text{supersoft}} = \int d^2\theta \Big[\sqrt{2} \, m_{DB} \theta^{\alpha} \mathbf{W}_{1\alpha} \mathbf{S} + 2\sqrt{2} \, m_{DW} \theta^{\alpha} \text{tr} \left(\mathbf{W}_{2\alpha} \mathbf{T} \right) \\ + 2\sqrt{2} \, m_{D3} \theta^{\alpha} \text{tr} \left(\mathbf{W}_{3\alpha} \mathbf{O} \right) \Big] + \text{h.c.}$$

Properties:

- Only *supersoft* terms that don't appear in the RG equations of the other operators.
- Only a finite shift is induced to the sfermion masses.
- Tree level enhancement of Higgs mass

->Here we consider the Minimal Dirac Gaugino Supersymmetric Standard Model (MDGSSM) where

- The only added superfields are **S**, **T** and **O**.
- Explicit R-symmetry breaking in the Higgs sector.

MDGSSM particle content

Names		Spin 0	Spin $1/2$	Spin 1	$SU(3), SU(2), U(1)_Y$		
Quarks	Q	$\tilde{Q} = (\tilde{u}_L, \tilde{d}_L)$	(u_L, d_L)		(3 , 2 ,1/6)		
	$\mathbf{u^{c}}$	$ ilde{u}_R^c$	u_R^c		$({f \overline{3}},{f 1},{f -2}/3)$		
$(\times 3 \text{ families})$	$\mathbf{d^{c}}$	$ ilde{d}_R^c$	d_R^c		$(\overline{f 3},{f 1},1/3)$		
Leptons	L	$(ilde{ u}_{eL}, ilde{e}_L)$	(ν_{eL}, e_L)		(1, 2, -1/2)	M	М
$(\times 3 \text{ families})$	e^{c}	$ ilde{e}_R^c$	e_R^c		(1, 1, 1)	S	D
Higgs	$\mathbf{H}_{\mathbf{u}}$	(H_u^+, H_u^0)	$(\tilde{H}_u^+, \tilde{H}_u^0)$		$({f 1},{f 2},1/2)$	M	G
	$\mathbf{H_d}$	(H^0_d, H^d)	$(\tilde{H}_d^0, \tilde{H}_d^-)$		$({f 1},{f 2},{ extsf{-}1/2})$		S
Gluons	\mathbf{W}_{3lpha}		$ ilde{g}_{lpha}$	g	(8 , 1 ,0)		M
W	\mathbf{W}_{2lpha}		$ ilde W^{\pm}, ilde W^0$	W^{\pm}, W^0	(1 , 3 ,0)		
В	\mathbf{W}_{1lpha}		\tilde{B}	В	$({f 1},{f 1},0\;)$		
DG-octet	$\mathbf{O}_{\mathbf{g}}$	O_g	$ ilde{g}'$		(8 , 1 ,0)]	
DG-triplet	\mathbf{T}	$\{T^0, T^\pm\}$	$\{ ilde W'^{\pm}, ilde W'^0\}$		$({f 1},{f 3},0)$		
DG-singlet	\mathbf{S}	S	$ ilde{B'}$		$({f 1},{f 1},0\;)$		J

MDGSSM electroweakino spectrum.

In the MDGSSM we have 6 neutralinos and 3 charginos:

$$\begin{pmatrix} 0 & M_{DW} & \frac{2\lambda_T}{g}m_Wc_\beta \\ M_{DW} & 0 & \sqrt{2}m_Ws_\beta \\ -\frac{2\lambda_T}{g}m_Ws_\beta & \sqrt{2}m_Wc_\beta & \mu \end{pmatrix} \qquad \begin{array}{l} \text{Binos} \\ \text{Winos} \\ \text{Higgsinos} \end{array}$$

Charginos

 λ_S and λ_T are the couplings between the scalar and triplet DG-adjoint fermions and the Higgs superfields

 $W \supset \lambda_S \mathbf{S} \, \mathbf{H}_{\mathbf{u}} \cdot \mathbf{H}_{\mathbf{d}} + 2\lambda_T \, \mathbf{H}_{\mathbf{d}} \cdot \mathbf{T} \mathbf{H}_{\mathbf{u}}$

They induce small-mass splittings between binos and winos, e.g. if $M_{DB} \ll M_{DW}$, μ

$$m_{\tilde{\chi}_{2}^{0}} - m_{\tilde{\chi}_{1}^{0}} = \left| 2 \frac{M_{Z}^{2} s_{W}^{2}}{\mu} \frac{(2\lambda_{S}^{2} - g_{Y}^{2})}{g_{Y}^{2}} c_{\beta} s_{\beta} \right|$$
 14

Constraining the Minimal Dirac Gaugino Model. 2. *LHC limits on gluinos and squarks.*

Gluino and squark production.

• Squark production.

t-channel exchange via Dirac gluino forbids final states of same helicity, reducing squark production cross sections.

• Gluino production.

Augmented number of gluino degrees of freedom enhance their production cross sections.

• Gluino-squark production Similar to Majorana case.

Squark production, LHC 13 TeV, $m_{\tilde{q}}$ =1.5 TeV.

Benchmark scenarios.

17

Full recasting results. DG vs MSSM.

Analysis: ATLAS 13TeV Multijet+MET (36/fb) search

Dashed line (MSSM1) is the limit one finds in the MSSM.

Constraining the Minimal Dirac Gaugino Model. 3. *Electroweak-ino sector.*

Finding regions with good DM.

 $0 < m_{DY}, m_{D2}, \mu < 2 \text{ TeV}; \quad 1.7 < \tan \beta < 60; \quad -3 < \lambda_S, \lambda_T < 3.$

We implemented an MCMC Metropolis-Hastings algorithm (with a small probability of random uniform jump) that walks toward the minimum of

Scan results.

$$\Omega h^2 = \Omega h^2_{\rm Planck} \pm 10\%$$

Constraints included so far:

- LSP is at least a fraction of observed DM content.
- LEP limits
- Z invisible decays
- H invisible decays
- XENON1T direct detection constraints.

LHC constraints. Prompt searches.

• Limits derived from simplified model reinterpretation using SModelS.

Included analyses:

- ATLAS EW-ino searches with 139/fb, constraining WZ(*), WH, WW(*)+ MET signatures.
- CMS EW-ino combination from 35/fb, constraining WZ(*) and WH + MET signatures.

LLP scenarios.

LHC constrains. Charged LLPs.

- Heavy Stable Charged Particle (HSCP) limits derived using SModelS (CMS 8TeV and 13TeV-13/fb).
- Disappearing Track (DT) limits derived using independent interpolation of upper limits (ATLAS and CMS 13TeV-36/fb, CMS 13TeV-140/fb*).

Neutral LLP signatures.

- Loop decays into soft photons dominate.
- Signature not covered at LHC!

Gluinos and squarks:

- Results were as expected from the differences between MDGSSM and MSSM regarding gluino and squark production.
- Stronger constrains when gluino production is dominant and weaker ones in the region where squark production dominates.
- We observed relaxed constraints in the scenarios with large bino masssplitting due to extra steps in the decay chain.

Electroweakino sector.

- We found a significant number of scenarios with long-lived charginos and/or neutralinos which survive DM constraints.
- Prompt searches only excluded certain points with LSP masses below 200 GeV.
- HSCP and DT searches provide strong constraints on scenarios with charged LLPs.
- Scenarios with neutral LLPs currently escape exclusion as their distinctive signature (soft photons plus missing energy) is not covered at the LHC.

Tools

(Contributions to Les Houches 2019)

1. Determining the orthogonality between LHC analyses

Motivation.

- We want know which LHC analyses are uncorrelated?
- Uncorrelated analyses can be trivially combined to derive potentially stronger bounds.
- We propose a statistical method to determine the orthogonality between signal regions of different analyses.

Strategy:

- Select the intersection of LHC analyses between SModelS and MadAnalysis 5.
- From the SModelS database extract the simplified models and BSM mass ranges for which the analyses are sensitive.
- Generate events by sampling the space of simplified model mass parameters, using MadGraph.
- Determine if events survive the SR cuts in the considered analyses.
- A statistical bootstrap procedure to extract the correlation matrix

 $\rho_{ij} = \operatorname{cov}_{ij} / \sqrt{\operatorname{cov}_{ii} \operatorname{cov}_{jj}}$

· SRs are determined as approximately independent if

$$|\rho_{ij}| < \rho_{\max}$$

Step 1: Collect the events.

	SR1	SR2	SR3
EV1	0	1	0
EV2	1	1	0
EV3	0	1	1

Step 2: Multiply each event by a value from Poisson distribution (EVi X POISi). Each iteration (j) creates a matrix (M_j) of 'Poissoned' events.

	SR1	SR2	SR3		POIS1		POIS2		POIS3
EV1	0	1	0		0		1		1
EV2	1	1	0	Х	2	3	1	,	0
EV3	0	1	1		1		0		1

Bootstrap procedure

Step 3: Sum over 'poissoned' rows to obtain the bootstrapped rows (BOOTi)

Step 4: Sum over rows of each 'poissoned' matrix. BOOTj= Sum_rows(M_j).

	SR1	SR2	SR3
BOOT1	2	3	1
BOOT2	1	2	0
BOOT3	0	2	1

Step 5: Compute the correlation matrix.

	SR1	SR2	SR3
SR1	1	.86	0
SR2	.86	1	.5
SR3	0	.5	1

Step 6: Determine independent SRs with a correlation cutoff ($|\rho_{ij}| < \rho_{max}$)

Example: CMS jets+MET search

CMS Multijet+MET vs CMS Dilepton+MET

Tools

(Contributions to Les Houches 2019)

2. Machine Learning cross sections.

37

MISSION:

- To build neural networks that can **precisely** predict, with an **uncertainty estimation**, the cross sections of the production processes.
- In this case those in the Inert Doublet Model (IDM).

MOTIVATION:

- The computation of production cross sections over large parameter spaces usually takes a large amount of time.
- Training DNNs to predict these cross sections could substantially save computational costs.

CHALLENGES:

- High level of precision is required.
- Small uncertainty desired.
- The values of the cross sections range over several order of magnitudes.
- The relation between the input parameters and the cross sections is not always linear, specially resonance regions.

The IDM.

The potential:

$$\begin{split} V &= \mu_1^2 |\mathbf{H_1}|^2 + \mu_2^2 |\mathbf{H_2}|^2 + \lambda_1 |\mathbf{H_1}|^4 + \lambda_2 |\mathbf{H_2}|^4 + \lambda_3 |\mathbf{H_1}|^2 |\mathbf{H_2}|^2 \\ &+ \lambda_4 |\mathbf{H_1}^{\dagger} \mathbf{H_2}|^2 + \frac{\lambda_5}{2} [(\mathbf{H_1}^{\dagger} \mathbf{H_2})^2 + \text{h.c.}] \,. \end{split}$$

Five free parameters:

$$\begin{split} M_{H^0}^2 &= \mu_2^2 + \frac{1}{2} (\lambda_3 + \lambda_4 + \lambda_5) v^2 , \\ M_{A^0}^2 &= \mu_2^2 + \frac{1}{2} (\lambda_3 + \lambda_4 - \lambda_5) v^2 , \\ M_{H^\pm}^2 &= \mu_2^2 + \frac{1}{2} \lambda_3 v^2 , \end{split} \qquad \lambda_2 \text{ and } \lambda_L \equiv \lambda_3 + \lambda_4 + \lambda_5 . \end{split}$$

8 production processes to learn:

 $pp \to H^0 H^0, \ A^0 A^0, \ H^0 A^0, \ H^0 H^+, \ A^0 H^+, \ H^+ H^-, \ H^0 H^- \text{ and } A^0 H^-.$

Acquiring the training data.

 \rightarrow 50,000 samples were generated using the **Jittered Sampling Method**, to evenly cover the input parameter space:

$$50 < M_{H^0}, \, M_{A^0}, \, M_{H^\pm} < 3000 \text{ GeV}; \quad -2\pi < \lambda_2, \, \lambda_L < 2\pi.$$

 \rightarrow Since the expected luminosity at HL-LHC is about 3/ab, we imposed a lower limit on the cross section of our dataset of

$$\sigma_{\rm min} = 10^{-7} {\rm pb}$$

 $\rightarrow\,$ The remaining data was divided as training and test data set in a 70:30 split.

Data preprocessing and loss function.

For the input parameters, we implemented a z-score transformation. For the cross sections we chose a log transformation, to reduce the range of the target values. $\sigma'_{\rm IDM} = \log \left[\frac{\sigma_{\rm IDM}}{\min(\sigma_{\rm IDM})} \right].$

To take into account the preprocessing of the target values we used a custom loss function that minimizes the MAPE of the original cross sections.

$$L(\sigma'_{\text{true}}, \sigma'_{\text{pred}}) = \frac{1}{N} \sum_{i=1}^{N} \left| 1 - \exp(\sigma'_{\text{pred}} - \sigma'_{\text{true}}) \right|,$$

Uncertainty estimation.

- For uncertainty estimation, permanent dropout was implemented.
- Fixed rate of randomly turned-off neurons in each hidden layer.
- At each iteration/prediction a different configuration trained/predicts.
- Several predictions are drawn from the same set of inputs and the corresponding mean and standard deviation is computed.

1) The coefficient of variance (CV) of the prediction

$$CV = \frac{\text{std}(\sigma_{pred})}{\mu(\sigma_{pred})}$$

2) The relative error of the prediction

$$RE = \left| \frac{(\sigma_{pred} - \sigma_{true})}{\sigma_{true}} \right|$$

3) Fraction of test points whose true values lie **within 1 std** from the mean correspondent prediction

	H^0H^0	A^0A^0	H^+H^-	$H^0 A^0$	H^0H^+	A^0H^+	H^0H^-	A^0H^-
$\mu(\text{RE})$	0.0303	0.1049	0.2259	0.0058	0.0076	0.0048	0.0057	0.0072
$\mu(\mathrm{CV})$	0.0850	0.1880	0.1508	0.0272	0.0402	0.0276	0.0276	0.0287
within 1 std	0.9833	0.9509	0.9812	0.9981	0.9995	0.9997	0.9886	0.9817

The best and the worst

 $p p \rightarrow A^0 A^0$

Determining between orthogonality LHC analyses.

- We present an statistical procedure to determine the orthogonality between SRs of different analyses.
- It is implemented in a Python program we call TACO (Testing Analyses' Correlations), available at https://github.com/hreyes91/TACO
- Outlook 1: to generate more complicated events to uncover potential correlations that might be missed.
- Outlook 2: Include more analyses.
- Outlook 3: Implement results in recasting tools.

Machine learning cross sections.

- We trained neural networks to predict the production xsections in the IDM with an uncertainty estimation.
- Results are promising but they can definitely be improved.
- Our training data should be more evenly distributed over the target values. Possible solution: dropout-based active learning.
- The coefficient of variance and relative error seem to be correlated.
- All the material of the project is open: https://github.com/SydneyOtten/IDM_XS

Conclusions.

Conclusions.

- There are a number of reasons to journey beyond the Standard Model.
- A plethora of theories on the market.
- Reinterpretation of LHC data is a very active and relevant field.
- Is composed by a great community of theorist and experimenters. I have enjoyed being part of it!
- Current improvements undergoing at LHC and future experiments may lead to exciting news in upcoming years.
- Modern data science will definitely play a role in future developments.
- I have really enjoyed working on these topics here and I'm grateful to all the people I have interacted during the last 3 years.
- La métropole grenoblois est superbe!

Thank you!!!

48

The Minimal Supersymmetric Standard Model.

Names	Superfield	Spin 0	Spin $1/2$	Spin 1	$SU(3), SU(2), U(1)_Y$
Quarks	\hat{Q}	$ ilde{Q} = (ilde{u}_L, ilde{d}_L)$	(u_L, d_L)		(3 , 2 ,1/6)
	$\hat{u^c}$	$ ilde{u}_R^c$	u_R^c		$(\overline{f 3},{f 1},{ extsf{-}2/3})$
$(\times 3 \text{ families})$	$\hat{d^c}$	$ ilde{d}_R^c$	d_R^c		$(\overline{f 3},{f 1},1/3)$
Leptons	\hat{L}	$(ilde{ u}_{eL}, ilde{e}_L)$	(u_{eL}, e_L)		$({f 1},{f 2},{ extsf{-}1/2})$
$(\times 3 \text{ families})$	$\hat{e^c}$	$ ilde{e}_R^c$	e_R^c		(1, 1, 1)
Higgs	$\hat{H_u}$	(H_u^+,H_u^0)	$(ilde{H}_u^+, ilde{H}_u^0)$		$({f 1},{f 2},1/2)$
	$\hat{H_d}$	(H^0_d, H^d)	$(\tilde{H}_d^0, \tilde{H}_d^-)$		$({f 1},{f 2},{ extsf{-1}/2})$
Gluons	\hat{G}		ĝ	g	(8 , 1 ,0)
W	\hat{W}		$\tilde{W}^{\pm}, \tilde{W}^{0}$	W^{\pm}, W^0	(1 , 3 ,0)
В	\hat{B}		<u> </u>	B	$({f 1},{f 1},0\;)$

Higgsinos and **electroweak gauginos** mix forming 4 neutralino and 2 chargino mass eigenstates:

$$M_{\tilde{\chi}^0} = \begin{pmatrix} M_1 & 0 & -g'v_d/2 & g'v_u/2 \\ 0 & M_2 & gv_d/2 & -gv_u/2 \\ -g'v_d/2 & gv_d/2 & 0 & \mu \\ g'v_u/2 & -gv_u/2 & \mu & 0 \end{pmatrix} \qquad M_{\tilde{\chi}^{\pm}} = \begin{pmatrix} M_2 & -gv_d/\sqrt{2} \\ -gv_u/\sqrt{2} & -\mu \end{pmatrix}$$

L and B conservation is ensured by $R = (-1)^{3(B-L)+2s}$, thus obtaining an LSP.

SUSY at colliders.

Gluinos and squarks

DECAYS

$$\begin{split} \tilde{g} &\to q \tilde{q} & \tilde{q} \to q \tilde{g} \\ \tilde{g} &\to q \bar{q} \tilde{\chi}_i^0, \ q q' \tilde{\chi}_j^\pm & \tilde{q} \to q \tilde{\chi}_i^0, \ \tilde{q} \to q' \tilde{\chi}_j^\pm \end{split}$$

SUSY at colliders.

Electroweakinos

PRODUCTION:

$$q\bar{q} \to \tilde{\chi}_i^+ \tilde{\chi}_j^-, \ \tilde{\chi}_k^0 \tilde{\chi}_l^0,$$
$$u\bar{d} \to \tilde{\chi}_i^+ \tilde{\chi}_k^0 \ d\bar{u} \to \tilde{\chi}_i^- \tilde{\chi}_k^0$$

Predominantly s-channel

DECAYS:

Usually subdominant

$$\begin{split} \tilde{\chi}_i^0 &\to Z \tilde{\chi}_k^0, \ W \tilde{\chi}_j^{\pm}, \ h \tilde{\chi}_k^0, \ l \tilde{l}, \nu \tilde{\nu}, \ q \bar{q}, [H \tilde{\chi}_k^0, \ A \tilde{\chi}_k^0, H^{\pm} \tilde{\chi}_k^{\mp}, q \tilde{q}], \\ \tilde{\chi}_j^{\pm} &\to W \tilde{\chi}_l^0, \ Z \tilde{\chi}_1^{\pm}, \ l \tilde{\nu}, \ \nu \tilde{l}, q \bar{q}', [H \tilde{\chi}_1^{\pm}, \ A \tilde{\chi}_1^{\pm}, H^{\pm} \tilde{\chi}_l^0, q \tilde{q}'] \end{split}$$

 $\tilde{\chi}_i^0 \to ff \tilde{\chi}_j^0, \ \tilde{\chi}_i^0 \to ff' \tilde{\chi}_j^{\pm}, \ \tilde{\chi}_i^{\pm} \to ff' \tilde{\chi}_j^0 \text{ and } \tilde{\chi}_2^{\pm} \to ff \tilde{\chi}_1^{\pm}$

First the best results...

53

True o[pb]

...and now the next to best ones.

Simplified model framework.

- Most ATLAS and CMS searches interpret their results in the context of Simplified model spectra (SMS).
- SMS are sets of *effective* Lagrangians that characterize new physics models with a small set of kinematic parameters (masses xsections, Brs,t)
- They show clear relation between model parameters and detector signatures.
- Reduced model dependence.
- Allow potential reinterpretation.

SMS results are presented as Upper Limit (UL) and Efficiency maps

Benchmark scenarios.

					(25)				
				Masses					
	P	arametei	rs			DG1	DG2	DG3	DG4
	DG1	DG2	DG3	DG4	$ ilde{\chi}^0_1$	201.35	182.1	181.8	182.4
m1D	200	200	200	200	$ ilde{\chi}_2^0$	201.72	218.0	216.6	213.2
	500	500	500	1175	$ ilde{\chi}_3^0$	403	400	396	408
	400	400	400	400	$ ilde{\chi}_4^0$	419	445	441	437
μ	2	400 2	2	2	$ ilde{\chi}_5^0$	537	536	535	1226
$-\lambda_{\alpha}$	$\begin{bmatrix} 2\\ 0.27 \end{bmatrix}$	$\begin{bmatrix} 2\\ 0.74 \end{bmatrix}$	$\begin{array}{c} 2 \\ 0.74 \end{array}$	0.70	$\tilde{\chi}_6^0$	548	548	546	1227
$-\lambda S$	0.27	0.14	0.14	0.13	$\tilde{\chi}_1^{\pm}$	400	395	391	398
$\sqrt{2} \lambda T$	1.2507	0.14 6 506	2.2606	-0.20 8.2606	$\tilde{\chi}_{21}^{\pm}$	536	536	534	1224
\tilde{Q}_3	1.2007	0.000	2.2000	0.2000	$\tilde{\chi}_3^{\pm}$	549	548	547	1229
$m_{ ilde{Q}_1}^2$	6.25e6	6.25e6	6.25e6	6.25e6	\tilde{t}_1	3604	2607	1590	2894
m_{3D}	1750	1750	1750	1750	\tilde{t}_2	3613	2637	1613	2927
					h_1	124.0	125.0	125.3	125.2

Small bino mass splitting. Large bino mass splitting. Light winos. Heavy winos.

We scanned over the gluino and squark mass spectrum.

Search for squarks and gluinos in final states with jets and missing transverse momentum using 36 fb⁻¹ of $\sqrt{s} = 13$ TeV *pp* collision data with the ATLAS detector

ATLAS analyses, 13 TeV

Analysis	Short Description	Implemented by	Code	Validation note	Version
ATLAS-SUSY-2015-06	Multijet + missing transverse momentum	S. Banerjee, B. Fuks, B. Zaldivar	⇔ Inspire	C→ PDF	v1.3/Delphes3
ATLAS-SUSY-2016-07	Multijet + missing transverse momentum (36.1 fb-1)	G. Chalons, H. Reyes- Gonzalez	G→ Inspire	⇔ PDF ⇔ Pythia files	v1.7/Delphes3
ATLAS-EXOT-2015-03	Monojet (3.2 fb-1)	D. Sengupta	G⇒ Inspire	G⇒ PDF	v1.3/Delphes3
ATLAS-EXOT-2016-25	Mono-Higgs (36.1 fb-1)	S. Jeon, Y. Kang, G. Lee, C. Yu	G→ Inspire	G→PDF	v1.6/Delphes3
⇒ATLAS-EXOT-2016-27	Monojet (36.2 fb-1)	D. Sengupta	G⇒ Inspire	G⇒PDF	v1.6/Delphes3
ATLAS-EXOT-2016-32	Monophoton (36.1 fb-1)	S. Baek, T.H. Jung	G→ Inspire	G→ PDF	v1.6/Delphes3
⇔ATLAS- CONF-2016-086	b-pair + missing transverse momentum	B. Fuks & M. Zumbihl	G⇒ Inspire	G→PDF	v1.6/Delphes3

http://madanalysis.irmp.ucl.ac.be/wiki/PublicAnalysisDatabase

Gluino vs squark masses map of the SModelS limits. Hard coloured points means exclusion.

T1: $pp \to \tilde{g}\tilde{g}, \ \tilde{g} \to q\bar{q}\tilde{\chi}_1^0$; T1tttt: $pp \to \tilde{g}\tilde{g}, \ t\bar{t}\tilde{\chi}_1^0$; T2: $pp \to \tilde{q}\tilde{q}^{(*)}, \tilde{q} \to q\tilde{\chi}_1^0$; TChiWW: $pp \to \tilde{\chi}_i^{\pm}\tilde{\chi}_i^{\pm}, \ \tilde{\chi}_i^{\pm} \to W^{\pm}\tilde{\chi}_1^0$

Due to the complexity of the model, constraints from SMS are weaker. E.g. The effective cross section from the T1 topology above is roughly 1% of the total.

Collider signals

Scan results.

Scan results.

 $\Omega h^2 = \Omega h^2_{\rm Planck} \pm 10\%$

Lifetime and mass splitting of binos: motivation of benchmark choices.

Constraints for four benchmark scenarios will be shown:

- One with small $\tilde{\chi}_{1,2}^0$ mass spliting/long $\tilde{\chi}_2^0$ lifetime: DG1 where λ_S =-0.27 .
- Three with a large $\tilde{\chi}_{1,2}^0$ mass spliting/short $\tilde{\chi}_2^0$ lifetime: DG2,DG3 with $\lambda_s = -0.74$ and DG4 with $\lambda_s = -0.79$.

Results from Recasting : DG4 vs MSSM4 (heavy winos).

CMS Dilepton+MET search (CMS-SUS-17-001)

$m_{T2}(l_1 l_2)$ [GeV]	100 - 140	140 - 240	> 240
$E_T^{\text{miss}} > 200 \text{ GeV}$	A2SR1	A2SR2	A2SR3

The training algorithm.

Fixed hyperparameters: Initializer \rightarrow He Normal, Activation function in each hidden layer \rightarrow LeakyReLu, Optimizer \rightarrow Adam.

We implemented EarlyStopping callback with a patience of 50. After 500 epochs have ended or EarlyStopping has terminated the iteration, the learning rate was divided by 2 and the training continues until 10 of those iterations were completed. In order to obtain an approximation of the **Bayesian uncertainties** as Monte Carlo dropout a **"permanent" dropout layer** was implemented after each hidden layer, this means that the dropout is present not only during training, but also for inferences.

66

To choose the best configuration, we ran a scan over the rest of the hyperparameter and trained a neural network with each combination for the $pp \rightarrow H_0H_0$. This configuration is formed by 6 hidden layers with 192 artificial neurons, λ of L2 regularization= 10^-5 and a dropout fraction of 1 %

An open library of classifiers and regressors for HEP phenomenology.

Sascha Caron^{IMAPP,Nikhef}, Andrea Coccaro^{INFN}, Sabine Kraml^{LPSC}, Andre Lessa^{UFABC}, Sydney Otten^{IMAPP,GRAPPA}, Humberto Reyes-González^{LPSC}, Richard Ruiz^{CP3}, Roberto Ruiz de Austri^{IFC}, Bob Stienen^{IMAPP,Nikhef}, Riccardo Torre^{INFN}

GOAL: To build a framework in which all material regarding ML applications for particle physics phenomenology can be shared and found for the purpose of education, reproducibility, etc...

Mainly we want:

- A collection of Machine Learning models.
- A collection of Training Data.
- A collection of code to build Machine Learning models.

