



# The Los Alamos Neutron Electric Dipole Moment Experiment

I. Some introductory material to put nEDMs in perspective

II. Measureing the nEDM

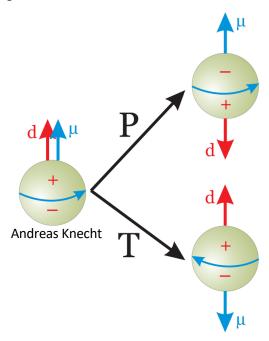
III. The LANL nEDM experiment

IV. Outlook












#### Electric Dipole Moment



$$\vec{d} = \int \vec{r} (\rho_{\mathcal{Q}}(\vec{r}) - \rho_{m}(\vec{r})) dV = d\vec{J}$$



Put this in E and B fields

$$H = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E} = -\mu \vec{J} \cdot \vec{B} - d\vec{J} \cdot \vec{E}$$

$$P_e T_e \qquad P_o T_o$$

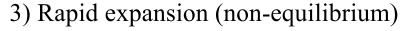
 $\not CP \longleftrightarrow Baryon Asymmetry \longleftrightarrow NEW PHYSICS (BSMP)$ 

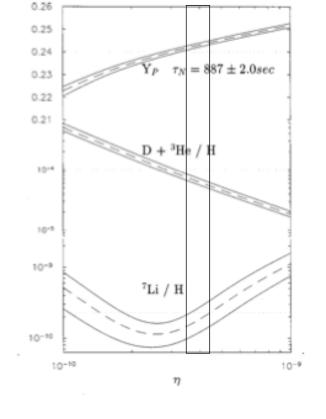
## Baryon Asymmetry requires BSMP



ÇP → Baryon Asymmetry → NEW PHYSICS (BSMP) CHIGAN

Fact: There is more matter than antimatter


$$n_p \neq n_{\overline{p}}$$
  $\eta = \frac{n_p - n_{\overline{p}}}{n_p + n_{\overline{p}}} \approx few \times 10^{-10}$ 
(WMAP/PLANCK, [4He],...)

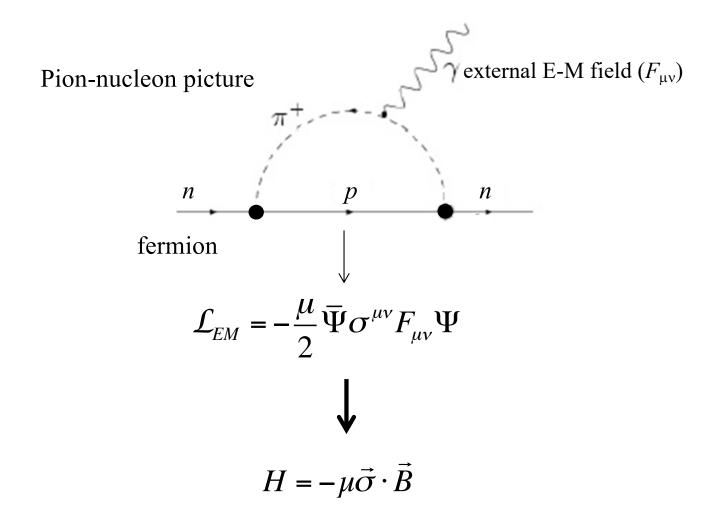

How? A) Initial condition – NO (inflation)



B) Evolution from  $\eta=0$ 

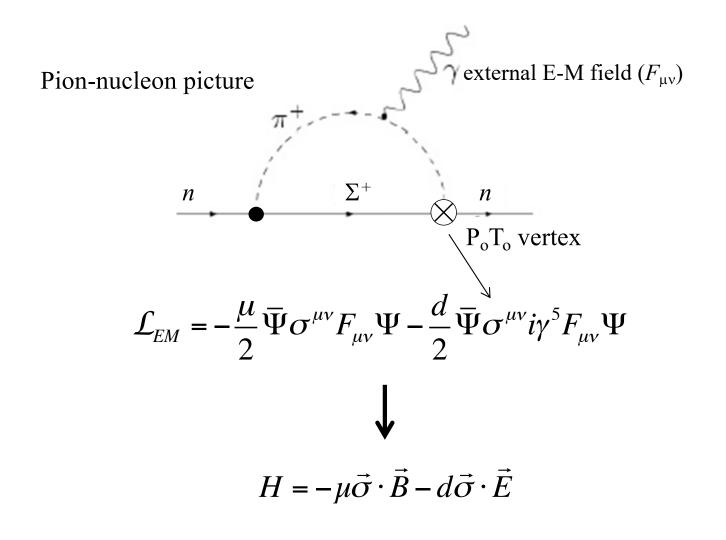
- 1) Baryon number violation
- 2) CP Violation make and EDM






A. Shakarov Nobel Peace Prize 1975

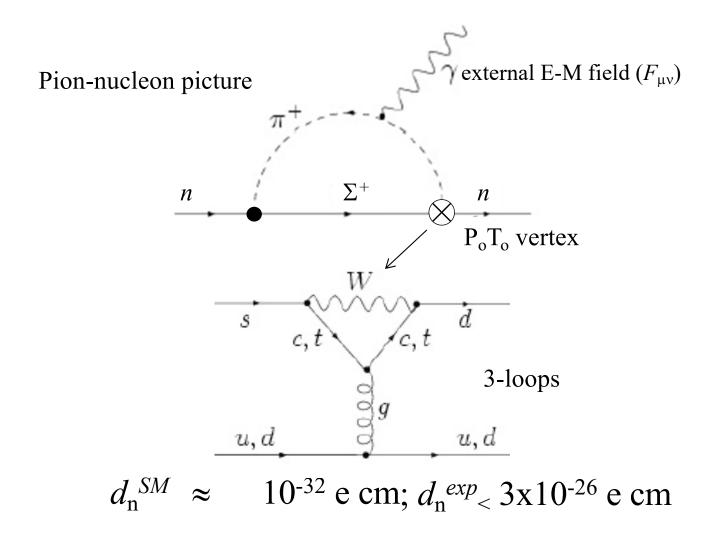
Another possibility: CP violation in neutrinos + "seesaw"


#### Magnetic Dipole Moment





#### Electric Dipole Moment






#### Standard-model/CKM EDMs small



Vanish at 2-loops for quarks and 3-loops for leptons Khriplovich, Zhitnitsky (1982), McKellar et al., (1987)



#### **DISCOVERY POTENTIAL!**

### EDMs ALSO probe TeV-scale physics



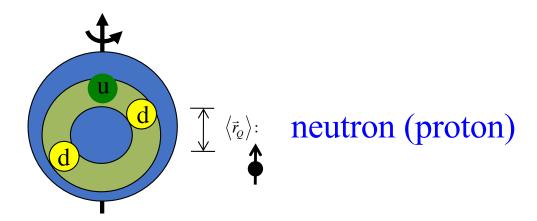


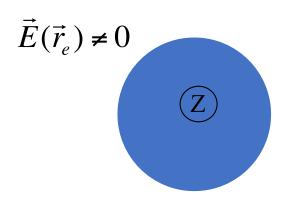
$$\mu \approx \frac{e\hbar}{2m} \qquad (\alpha = \frac{e^2}{\hbar c})$$

$$\frac{d}{\mu} \approx f^{2N} \left(\frac{m_q}{m_X}\right)^2 \sin \phi$$

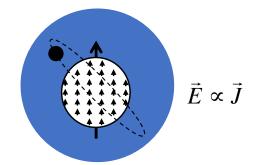
$$\approx 1$$

$$\approx \alpha$$


$$\approx 10^{-14} \quad d_n \sim 10^{-26} \text{ e-cm}$$


$$m_X \approx m_q \sqrt{10^{14} \alpha^N} \approx 1$$
# loops

~ 10+ TeV LHC scale


or  $\phi$  is small

#### Particle Interactions Polarize Particles, Atoms, Molecules



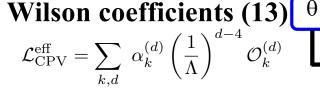


Paramagnetic ( $\vec{L} \cdot \vec{S}$  coupling)  $\propto Z^{\approx 3}$ 



Diamagnetic: Schiff moment, MQM  $\propto Z^2$ 

$$\vec{S} = S\vec{J} = \frac{1}{10} \langle r^2 \vec{r}_p \rangle - \frac{1}{6} Z \langle r^2 \rangle \langle \vec{r}_p \rangle$$


# EDMs arise from many sources Rev. Mod. Phys., Vol. 91, No. 1 (Jan 2019)

 $C_{ggg}$ ,  $C_{qqqq}(1,8)$ ,  $C_{qH}$ 

#### **Fundamental theory**

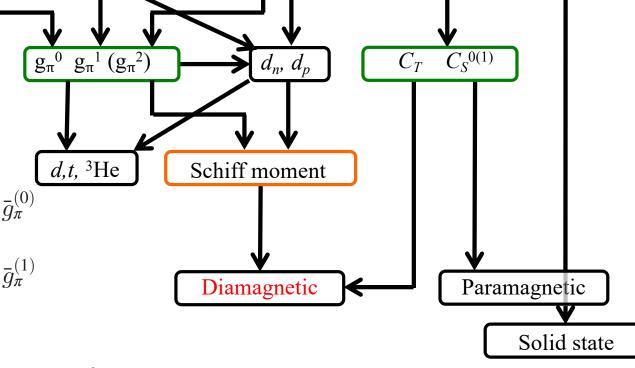
CKM, θ, SUSY, Multi Higgs, LR-symmetry

 $d_{ud} d_{ud}$ 



#### Low energy parameters

$$\bar{g}_{CP}^0 \approx 0.027 \; \theta_{QCD}$$


#### **Nucleus level**

$$S = s_N \bar{d}_N^{sr} + \left[ \frac{m_N g_A}{F_{\pi}} a_0 + s_N \alpha_{n\bar{g}_{\pi}^{(0)}} \right] \bar{g}_{\pi}^{(0)} + \left[ \frac{m_N g_A}{F_{\pi}} a_1 + s_N \alpha_{n\bar{g}_{\pi}^{(1)}} \right] \bar{g}_{\pi}^{(1)}$$

#### Atom/molecule level

$$d_{A} = \eta_{e}d_{e} + \kappa_{S}S(\theta_{QCD}, g_{\pi}) + (k_{T}C_{T} + k_{S}C_{S}) + h.o.$$

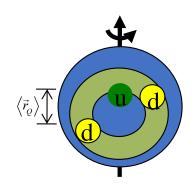
$$\sim Z^{3} \qquad \sim Z^{2}$$

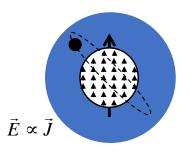


semileptonic

MICHIGAN

 $d_{e}$ 


## EDM results




Rev. Mod. Phys., Vol. 91, No. 1 (Jan 2019)



$$\vec{E}(\vec{r}_e) \neq 0$$





| System            | Result                                          | 95% u.l.                           | ref. |  |  |  |  |
|-------------------|-------------------------------------------------|------------------------------------|------|--|--|--|--|
|                   | Paramagnetic syst                               |                                    |      |  |  |  |  |
| $Xe^m$            | $d_A = (0.7 \pm 1.4) \times 10^{-22}$           | $3.1 \times 10^{-22}$ e-cm         | a    |  |  |  |  |
| Cs                | $d_A = (-1.8 \pm 6.9) \times 10^{-24}$          | $1.4 \times 10^{-23}$ e-cm         | b    |  |  |  |  |
|                   | $d_e = (-1.5 \pm 5.7) \times 10^{-26}$          | $1.2 \times 10^{-25}$ e-cm         |      |  |  |  |  |
| Tl                | $d_A = (-4.0 \pm 4.3) \times 10^{-25}$          | $1.1 \times 10^{-24}$ e-cm         | c    |  |  |  |  |
|                   | $d_e = (6.9 \pm 7.4) \times 10^{-28}$           | $1.9 \times 10^{-27}$ e-cm         |      |  |  |  |  |
| YbF               | $d_e = (-2.4 \pm 5.9) \times 10^{-28}$          | $1.2 \times 10^{-27} \text{ e-cm}$ | d    |  |  |  |  |
| ThO               | $\omega^{NE} = -510 \pm 485 \ \mu \text{rad/s}$ |                                    | e    |  |  |  |  |
|                   | $d_e = (4.3 \pm 4.0) \times 10^{-30}$           | $1.1 \times 10^{-29}$ e-cm         |      |  |  |  |  |
|                   | $C_S = (2.9 \pm 2.7) \times 10^{-10}$           | $7.3 \times 10^{-10}$              |      |  |  |  |  |
| HfF <sup>+</sup>  | $2\pi f^{BD} = 0.6 \pm 5.6 \text{ mrad/s}$      |                                    | f    |  |  |  |  |
|                   | $d_e = (0.9 \pm 7.9) \times 10^{-29}$           | $16 \times 10^{-29}$ e-cm          |      |  |  |  |  |
|                   | Diamagnetic systems                             |                                    |      |  |  |  |  |
| n                 | $d_n = (-0.0 \pm 1.1) \times 10^{-26}$          | $2.2 \times 10^{-26} \text{ e-cm}$ | g    |  |  |  |  |
| <sup>199</sup> Hg | $d_A = (2.2 \pm 3.1) \times 10^{-30}$           | $7.4 \times 10^{-30}$ e-cm         | h    |  |  |  |  |
| <sup>129</sup> Xe | $d_A = (1.4 \pm 6.9) \times 10^{-28}$           | $1.4 \times 10^{-27}$ e-cm         | i    |  |  |  |  |
| $^{225}$ Ra       | $d_A = (4 \pm 6) \times 10^{-24}$               | $1.4 \times 10^{-23}$ e-cm         | j    |  |  |  |  |
| TlF               | $d = (-1.7 \pm 2.9) \times 10^{-23}$            | $6.5 \times 10^{-23} \text{ e-cm}$ | k    |  |  |  |  |
|                   | Particle systems                                |                                    |      |  |  |  |  |
| $\mu$             | $d_{\mu} = (0.0 \pm 0.9) \times 10^{-19}$       | $1.8 \times 10^{-19} \text{ e-cm}$ | l    |  |  |  |  |
| Λ                 | $d_{\Lambda} = (-3.0 \pm 7.4) \times 10^{-17}$  | $7.9 \times 10^{-17} \text{ e-cm}$ | m    |  |  |  |  |

2017 2018 (8x)

2020 (1.6x) 2017 (4x) 2019 (5x) 2016

# Diagmagetic atoms and nucleons



T.C. & M. Ramsey-Musolf – Phys. Rev. C 91 035502 (2015)

|                 |                           |                      |                       |                       | MIC        | CHIG |
|-----------------|---------------------------|----------------------|-----------------------|-----------------------|------------|------|
|                 | $\mathbf{C}_{\mathbf{T}}$ | $g_{\pi}^{0}$        | $g_{\pi}^{-1}$        | $d_0^{sr}$            | $d_1^{sr}$ |      |
| n, p            |                           |                      |                       | 1                     | -1         |      |
| Xe, Hg, TlF, Ra | X                         | X                    | X                     |                       |            |      |
| 95% upper limit | $3x10^{-7}$               | 1.2x10 <sup>-9</sup> | 2.9x10 <sup>-10</sup> | 1.8x10 <sup>-23</sup> |            |      |



$$d_n = \bar{d}_n^{\rm sr} - \frac{eg_A \bar{g}_{\pi}^{(0)}}{8\pi^2 F_{\pi}} \left\{ \ln \frac{m_{\pi}^2}{m_N^2} - \frac{\pi m_{\pi}}{2m_N} + \frac{\bar{g}_{\pi}^{(1)}}{4\bar{g}_{\pi}^{(0)}} \left( \kappa_1 - \kappa_0 \right) \frac{m_{\pi}^2}{m_N^2} \ln \frac{m_{\pi}^2}{m_N^2} \right\}$$

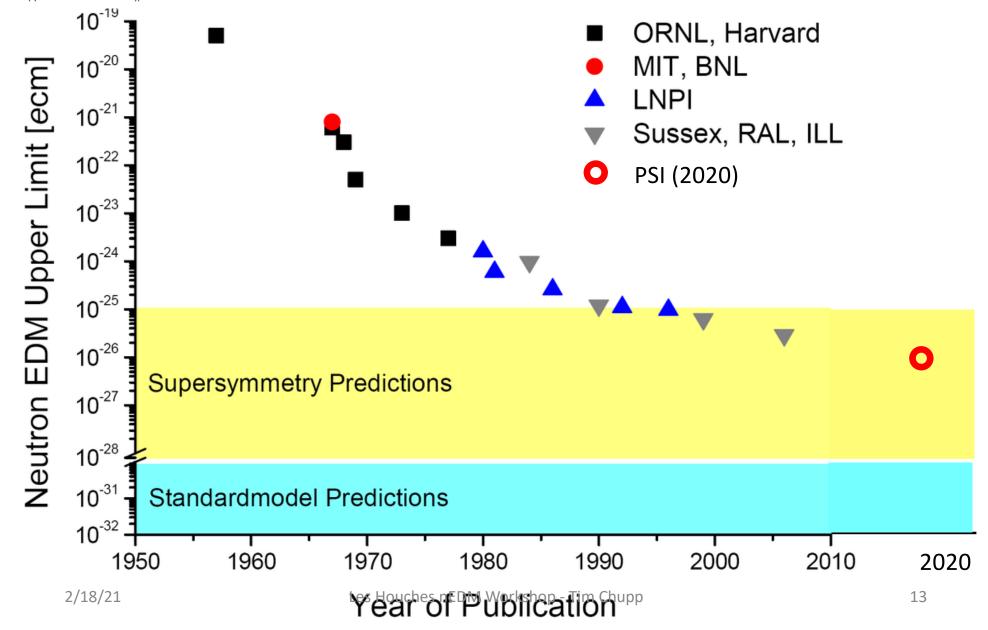
$$\approx \bar{d}_n^{sr} - (1.44 \times 10^{-14} g_\pi^{(0)} - 8.3 \times 10^{-16} g_\pi^{(1)}) e - cm$$

$$\bar{g}_{\pi}^{(0)} \approx 0.27 \; \bar{\theta}$$

$$\bar{\theta} < (2 \times 10^{-10} - 4 \times 10^{-9})$$

$$d_n^{\bar{\theta}} \approx -(0.9-1.2) \times 10^{-16} \bar{\theta} e \text{ cm.} \qquad \bar{g}_{\pi}^{(0)} < 3 \times 10^{-7}$$

#### **MOTIVATES AXION SEARCHES**


#### Neutron electric dipole moment

From Wikipedia, the free encyclopedia

"NEDM" redirects here. For the Sussex experiment, see Sussex/RAL/ILL neutron EDM experiment.

The **neutron electric dipole moment (nEDM)** is a measure for the distribution of positive and negative charge inside the neutron. A finite electric dipole moment can only exist if the centers of the negative and positive charge distribution inside the particle do not coincide. So far, no neutron EDM has been found. The current best upper limit amounts to  $|d_p| < 2.9 \times 10^{-26} e \cdot cm.$ <sup>[1]</sup>



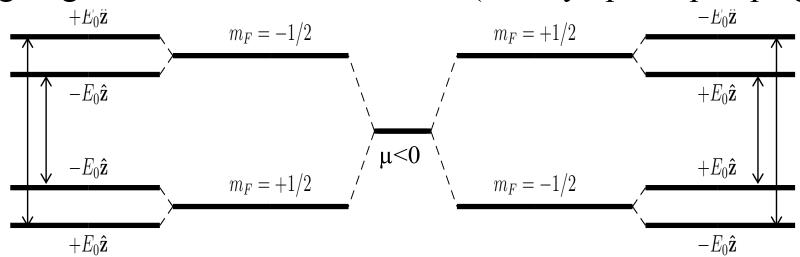




## Storage Ring EDMs will challenge neutrons

| Particle             | J   | а         | $ \vec{p} $ (GeV/c)          | γ                          | $ \vec{B} $ (T)            | $ \vec{E}  \; (\mathrm{kV/cm})$ | $ \vec{E}' /\gamma~(\mathrm{kV/cm})$ | <i>R</i> (m)                 | $\sigma_d^{\rm goal} \ (e \ {\rm cm})$                                                            | Ref.                        |
|----------------------|-----|-----------|------------------------------|----------------------------|----------------------------|---------------------------------|--------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------|
| $\mu^\pm$            | 1/2 | +0.00117  | 3.094<br>0.3<br>0.5<br>0.125 | 29.3<br>3.0<br>5.0<br>1.57 | 1.45<br>3.0<br>0.25<br>1.0 | 0.0<br>0.0<br>22.0<br>6.7       | 4300<br>8500<br>760<br>2300          | 7.11<br>0.333<br>7.0<br>0.42 | $   \begin{array}{r}     10^{-21} \\     10^{-21} \\     10^{-24} \\     10^{-24}   \end{array} $ | E989<br>E34<br>srEDM<br>PSI |
| $p^+$                | 1/2 | +1.79285  | 0.7007<br>0.7007             | 1.248<br>1.248             | 0.0<br>0.0                 | 80.0<br>140.0                   | 80<br>140                            | 52.3<br>30.0                 | $10^{-29} \\ 10^{-29}$                                                                            | srEDM<br>JEDI               |
| $d^+$                | 1   | -0.14299  | 1.0<br>1.000                 | 1.13<br>1.13               | 0.5<br>0.135               | 120.0<br>33.0                   | 580<br>160                           | 8.4<br>30.0                  | $10^{-29} \\ 10^{-29}$                                                                            | srEDM<br>JEDI               |
| $^{3}\text{He}^{++}$ | 1/2 | -4.184 15 | 1.211                        | 1.09                       | 0.042                      | 140.0                           | 89                                   | 30.0                         | $10^{-29}$                                                                                        | JEDI                        |

Fermilab, Jparc, BNL, COSY


~10 years

#### EDM Measurement



$$H = \vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}$$

- Strong electric field (static): need neutral particles (or confined ion)
- Large signal needs POLARIZATION (usually optical pumping)



• MEASURE FREQUENCIES:

• AND MAGNETIC FIELDS 
$$\frac{1}{2E} \frac{\hbar}{T_2} \frac{1}{\sqrt{\varphi_n T_2}} \frac{1}{\sqrt{2E}} \frac{\hbar}{T_2} \frac{1}{\sqrt{N_{\gamma}}}$$

Phase-noise limit

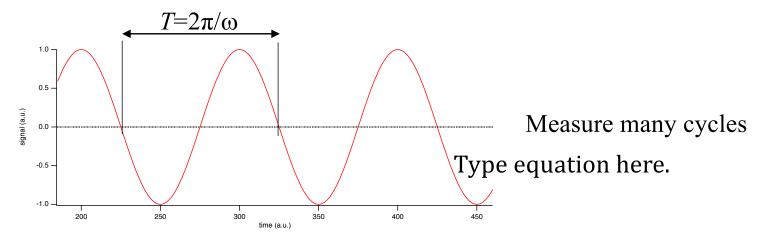
Count-rate limit

#### Experiments



$$H = \vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}$$

- Strong electric field
- Large signal needs POLARIZATION (usually optical pumping)
- MEASURE FREQUENCIES (N. Ramsey...)
- AND MAGNETIC FIELDS (Co)magnetometry


$$\sigma_d \approx \frac{1}{2E} \frac{\hbar}{\tau} \frac{1}{S/N}$$
Measurement time (HV dwell)

#### Measuring Frequencies

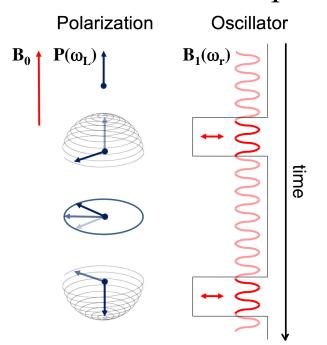
ω convention: always write  $\frac{ω}{2π}$  (Hz)



• Inverse of the period of an oscillator



• Rate of change of phase (need a phase detector)


$$\omega = \frac{\Delta \varphi}{\tau}$$

$$\sigma_{\omega} = \frac{\sigma_{\varphi}}{\tau}$$

#### Measuring Phase – Ramsey SOF Separated Oscillatory Fields

Mea





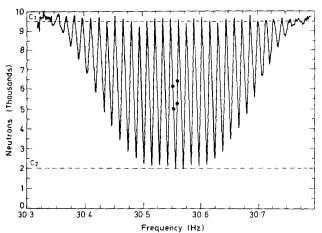
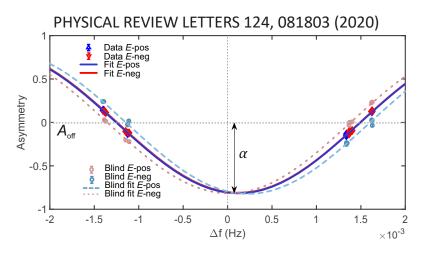




Fig. 2. A neutron magnetic resonance curve obtained using the time-separated oscillatory fields technique. Polarized ultra-cold neutrons were stored for 68 s in a magnetic field of 1  $\mu$ T, giving a linewidth of 7 mHz for the central fringe. Data are taken at the four points shown, which are approximately halfway up each side of the central fringe, and separated by one tenth of a linewidth.



#### **Experiments**



$$H = \vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}$$

- Strong electric field
- Large signal needs POLARIZATION (usually optical pumping)
- MEASURE FREQUENCIES

$$\propto \frac{1}{\tau^{3/2}}$$
 Per HV dwell

• AND MAGNETIC FIELDS - (Co)magnetometry

$$\sigma_{d} \approx \frac{1}{2E} \frac{\hbar}{\tau} \frac{1}{S/N}$$

$$\frac{1}{2E} \frac{\hbar}{\tau} \frac{1}{\sqrt{\varphi_{n} \tau}}$$
Phase-noise limit Phase-noise limit Phase-noise limit Phase-noise limit Phase-noise limit (HV dwell)

#### What we want

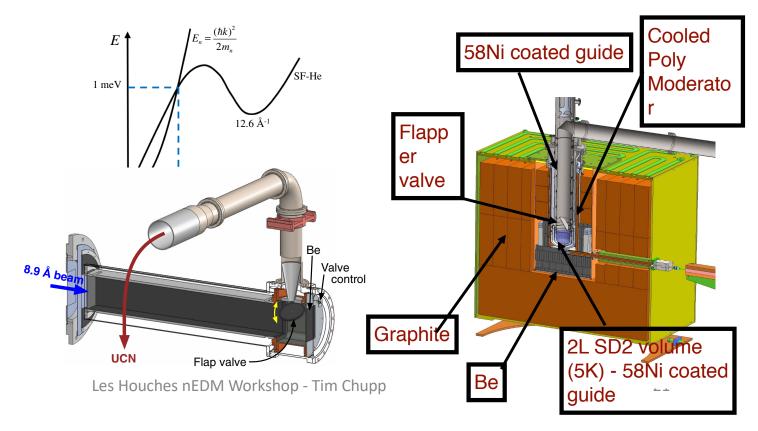


| What we want              | How we get it       | σ <sub>d</sub> Dependence |
|---------------------------|---------------------|---------------------------|
| Long observation times    | UCN Storage         | 1/T                       |
| High electric fields      | Limited by "bottle" | 1/E                       |
| Precise phase measurement | Lots of UCNs        | $1/\sqrt{N_{UCN}}$        |
| Stable magnetic fields    | MSR, magnetometry   | $\sigma_{B}$              |
| Uniform magnetic fields   | Magnet design       | $ abla ec{B}$             |

#### **Ultra-Cold Neutrons (UCN)**

SLOW (<8 m/s), "long" wavelength (50 nm) with OPTICAL PROPERTIES - Storage


| Property            | Value                                     | Feature                 |
|---------------------|-------------------------------------------|-------------------------|
| Charge              | 0                                         | "Inert"                 |
| Magnetic moment     | $2\mu/m_n = (3.4 \text{ m/s})^2/\text{T}$ | Polarize/spin transport |
| Mass                | $mg=(3.1 \text{ m/s})^2/\text{m}$         | Manipulate with gravity |
| Strong Interactions |                                           | Reflect/absorb/Store    |
| Weak interactions   | $\tau_n = 781 \text{ s}$                  | Limits observation time |

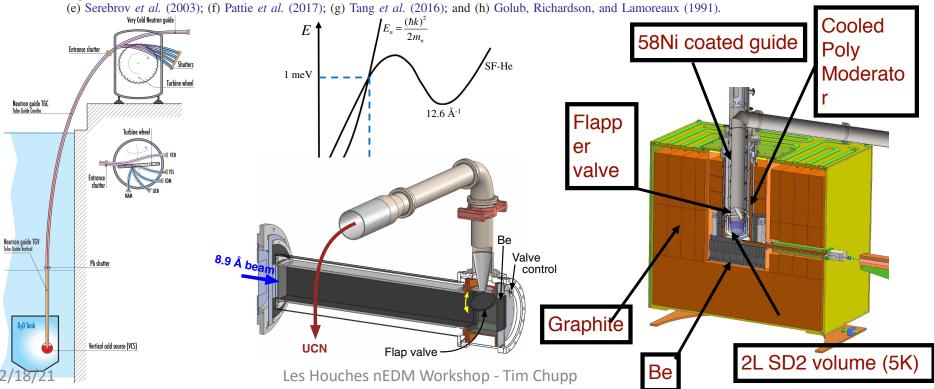

#### **Ultra-Cold Neutrons (UCN)**



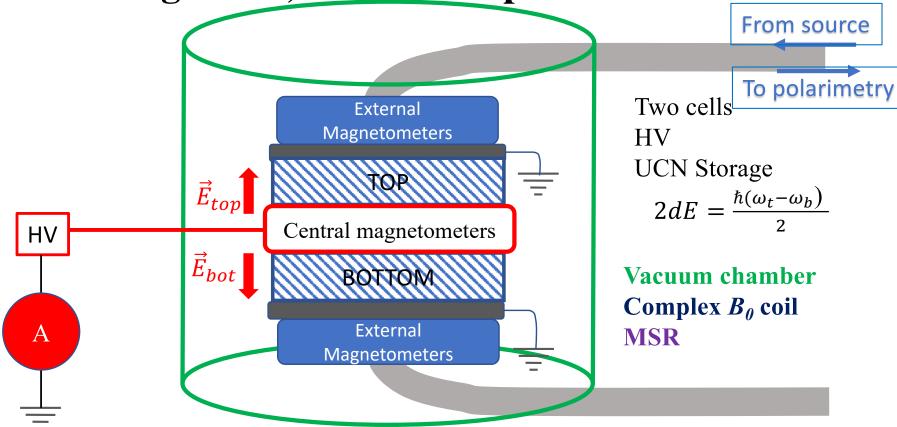
## SLOW (<8 m/s), "long" wavelength (50 nm) OPTICAL PROPERTIES

| Source      | Туре                      | Converter           | UCN/cm <sup>3</sup>                                        | Ref. |
|-------------|---------------------------|---------------------|------------------------------------------------------------|------|
| ILL PF2     | Reactor cold source       | (Turbine)           | Two polarized; based on detected UCN                       | (a)  |
| LANL        | Spallation                | $sD_2$              | 40 polarized; observed in a test chamber                   | (b)  |
| PSI         | Spallation                | $\mathrm{sD}_2^{z}$ | 22 unpolarized; in standard storage bottle                 | (c)  |
| TRIGA Mainz | Pulsed reactor            | $sD_2$              | Ten unpolarized                                            | (d)  |
| ILL SUN-II  | Reactor cold-neutron beam | SF-He               | Ten polarized; from production, dilution, and polarization | (e)  |
| JPARC       | Spallation VCN            | Rotating mirror     | 1.4 unpolarized; measured at source                        | (f)  |






#### **Ultra-Cold Neutrons (UCN)**

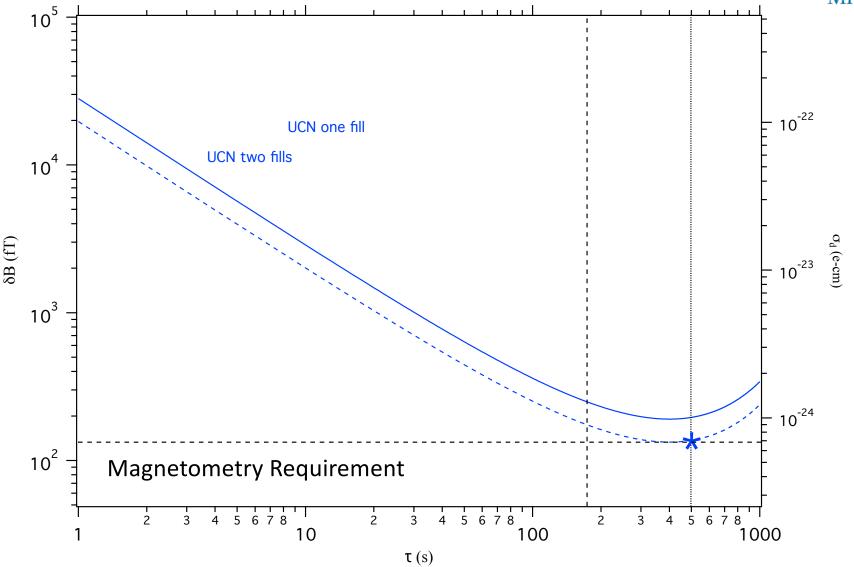



| Material                     | V (neV) | Loss per bounce         | Ref. | Depolarization              | Ref. |  |
|------------------------------|---------|-------------------------|------|-----------------------------|------|--|
| DPe (300 K)                  | 214     | $1.3 \times 10^{-4}$    | (a)  | $4 \times 10^{-6}$          | (b)  |  |
| DLC on Al substrate (70 K)   | 270     | $1.7 \times 10^{-4}$    | (c)  | $0.7 \times 10^{-6}$        | (c)  |  |
| DLC on Al substrate (300 K)  | 270     | $3.5 \times 10^{-4}$    | (c)  | $3 \times 10^{-6}$          | (c)  |  |
| DLC on PET substrate (70 K)  | 242     | $1.6 \times 10^{-4}$    | (c)  | $15 \pm \times 10^{-6}$     | (c)  |  |
| DLC on PET substrate (300 K) | 242     | $5.8 \times 10^{-4}$    | (c)  | $(14 \pm 1) \times 10^{-6}$ | (c)  |  |
| Fomblin 300 K                | 106.5   | $2.2 \times 10^{-5}$    | (d)  | $1 \times 10^{-5}$          | (e)  |  |
| Be (10 K)                    | 252     | $3 \times 10^{-5}$      | (d)  | $1.1 \times 10^{-5}$        | (e)  |  |
| Be (300 K)                   | 252     | $(4-10) \times 10^{-5}$ | (d)  | $1.1 \times 10^{-5}$        | (e)  |  |
| NiP                          | 213     | $1.3 \times 10^{-4}$    | (f)  | $< 7 \times 10^{-6}$        | (g)  |  |
| <sup>58</sup> Ni             | 335     |                         | (h)  | Strong                      |      |  |
| Fe/steel/stainless           | 180-190 |                         | (h)  | Strong                      |      |  |

References: (a) Brenner et al. (2015); (b) T. Ito et al. (2018); (c) Atchison et al. (2007); (d) Serebrov et al. (2005);



The generic, non-SNS experiment




#### **Major systematic effects**

| Effect                     | Mitigation                             |
|----------------------------|----------------------------------------|
| B-field variations         | MSR, Two cells, magnetometry           |
| Leakage currents           | Monitor, Construction (comagnetometry) |
| vxE effects                | Uniform fields                         |
| Lots of higher order stuff |                                        |

# EDM sensitivity (LANL nEDM)





#### LANL nEDM Collaboration

T. Chupp\*, S. Clayton, C. Cude-Woods, S. Currie, T. Hassan, T. Ito, M. Makela, C. Morris,

C. O'Shaughnessy, Z. Tang, W. Uhrich, A. Urbaitis,

Los Alamos National Laboratory

\* 2020 LANL Rosen scholar

T. Chupp, A. Tewsley-Booth, F.B. Hills

University of Michigan

N. Sachdeva

Northwestern University

J. Chen, F. Gonzales, C. Hughes, C.-Y. Liu, J. Long, A. Reid, W. Snow, D. Wong

Indiana University

A. Aleksandrova, J. Brewington, W. Korsch, M. McCrea, P. Palamure, B. Plaster

University of Kentucky

R. Pattie Jr.

A. Holley

East Tennessee State University Tennessee Tech University

S. Stanislaus

Valparaiso University

T. J. Bowles, B. Heckel

University of Washington

S.K. Lamoreaux

E. Sharapov

Yale University

Joint Institute of Nuclear Research











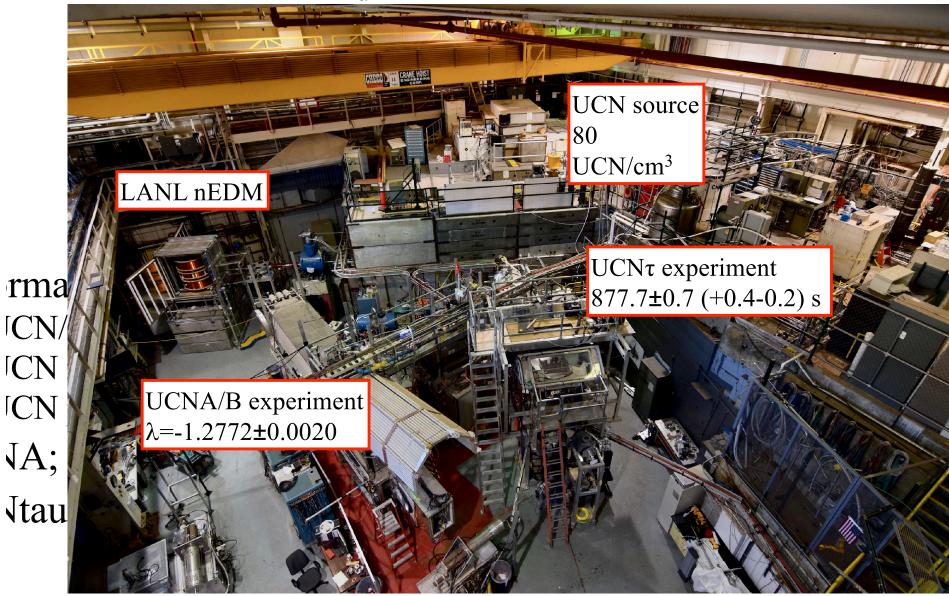




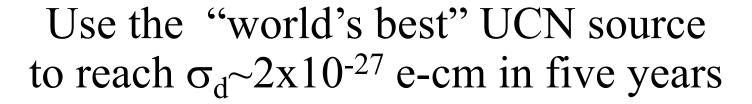
**MICHIGAN** 






## Collaboration Talks




| We    | ed                                                                                                              |                        |      | •      | Thurs                                                                                | MICHIGAN                      |
|-------|-----------------------------------------------------------------------------------------------------------------|------------------------|------|--------|--------------------------------------------------------------------------------------|-------------------------------|
| 14:00 | Overview of the new UCN facility at TRIUMF                                                                      | Florian Kuchler        | 14:0 | 00 Т   | he magnetometer system planned for the neutron electric dipole moment (nEDM) experin | nent at LANL Yi (Jennie) Chen |
|       | FRANCE - 74 310 LES HOUCHES, Les Houches School of Physics                                                      | 14:00 - 14:20          |      |        | RANCE - 74 310 LES HOUCHES, Les Houches School of Physics                            | 14:00 - 14:20                 |
|       | Time-dependent thermal modeling for the TUCAN source                                                            | Jeffery Martin         |      |        | aser-based comagnetometry for the TUCAN nEDM measurement                             | Eric Miller                   |
|       | FRANCE - 74 310 LES HOUCHES, Les Houches School of Physics                                                      | 14:20 - 14:40          |      |        | RANCE - 74 310 LES HOUCHES, Les Houches School of Physics                            | 14:20 - 14:40                 |
|       | Optimizing the performance of a spallation-driven ultracold-neutron source with deuterium and Wolfgang Schreyer | superfluid-helium mode |      |        | Optical magnetometry for the TUCAN nEDM experiment                                   | Wolfgang Klassen              |
| 5:00  | Nickel-Phosphorus Coating Challenges of the TUCAN UCN source                                                    | Russell Mammei         |      | F      | RANCE - 74 310 LES HOUCHES, Les Houches School of Physics                            | 14:40 - 15:00                 |
|       | FRANCE - 74 310 LES HOUCHES, Les Houches School of Physics                                                      |                        | 15:0 | 00     | Agnetometry for the Los Alamos National Laboratory's nEDM experiment                 | Felicity Hills                |
|       | Development of a Helium-3 Cryostat for the TRIUMF Ultra-Cold Advanced Neutron Source                            | 15:00 - 1 Scre         |      | F      | RANCE - 74 310 LES HOUCHES, Les Houches School of Physics                            | 15:00 - 15:20                 |
|       | FRANCE - 74 310 LES HOUCHES, Les Houches School of Physics                                                      | 15:20 - 15:40          |      | N      | Mercury comagnetometer: the light shift                                              | Selim Touati                  |
|       | Performance measurement of ultracold neutron guides at J-PARC for a neutron EDM experimen                       |                        |      | F      | RANCE - 74 310 LES HOUCHES, Les Houches School of Physics                            | 15:20 - 15:40                 |
|       | FRANCE - 74 310 LES HOUCHES, Les Houches School of Physics                                                      | 15:40 - 16:00          |      | т      | he caesium magnetometer array for the n2EDM experiment                               | Duarte Pais                   |
| 00    |                                                                                                                 |                        |      |        | RANCE - 74 310 LES HOUCHES, Les Houches School of Physics                            | 15:40 - 16:00                 |
|       | Jitra cold neutron transport for the Neutron Electric Dipole Moment Search at Los Alamos Natio<br>Douglas Wong  | onal Laboratory        | <    | Fri 19 |                                                                                      | >                             |
|       | Measurement of Neutron Polarization and Transmission for the nEDM@SNS Experiment.                               | Kavish Imam            |      |        | □ Imprimer PDF Plein écran                                                           | Vue détaillée Filtre          |
| 00    | FRANCE - 74 310 LES HOUCHES, Les Houches School of Physics                                                      | 16:50 - 17:10          |      | 16:00  |                                                                                      |                               |
|       | PSI UCN source                                                                                                  | Ingo Rienäcker         | 1    |        |                                                                                      |                               |
|       | FRANCE - 74 310 LES HOUCHES, Les Houches School of Physics                                                      | 17:10 - 17:30          |      |        |                                                                                      |                               |
|       |                                                                                                                 |                        |      |        | Magnetic Field System in the nEDM experiment at the SNS                              | Sc<br>Alina Aleksandrova      |
|       |                                                                                                                 |                        |      |        | FRANCE - 74 310 LES HOUCHES, Les Houches School of Physics                           | 16:40 - 17:00                 |
|       |                                                                                                                 |                        |      | 17:00  | Creation of a superconducting switch to close the B0 coil in the nEDM@SNS experiment | : Clark Hickmar               |
|       |                                                                                                                 |                        |      |        | FRANCE - 74 310 LES HOUCHES, Les Houches School of Physics                           | 17:00 - 17:20                 |
|       |                                                                                                                 |                        | 1    |        | Magnetic Shim Coils for the TUCAN nEDM Experiment                                    | Mark McCrea                   |
|       |                                                                                                                 |                        |      |        | FRANCE - 74 310 LES HOUCHES, Les Houches School of Physics                           | 17:20 - 17:40                 |
|       |                                                                                                                 |                        |      |        | B0 Magnetic Field Coil Design and Fabrication for the LANL nEDM Experiment           | Jared Brewingtor              |
|       |                                                                                                                 |                        |      |        | EDANCE 74 210 LES HOLICUES Las Haushas School of Dhusias                             | 17-40 10-00                   |
|       |                                                                                                                 |                        |      | 18:00  | Magnetic Gradient Amelioration for nEDM@LANL                                         | Austin Reid                   |
|       |                                                                                                                 |                        |      |        |                                                                                      |                               |

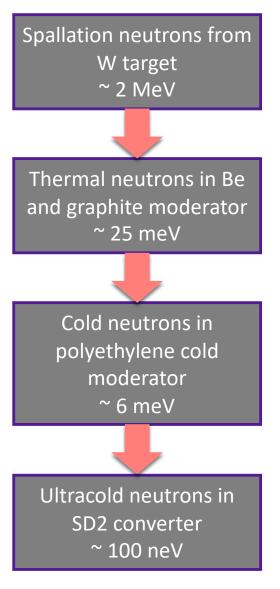
# Use the "world's best best UCN source" to reach $\sigma_d$ ~2x10<sup>-27</sup> e-cm in five years





2/18/21

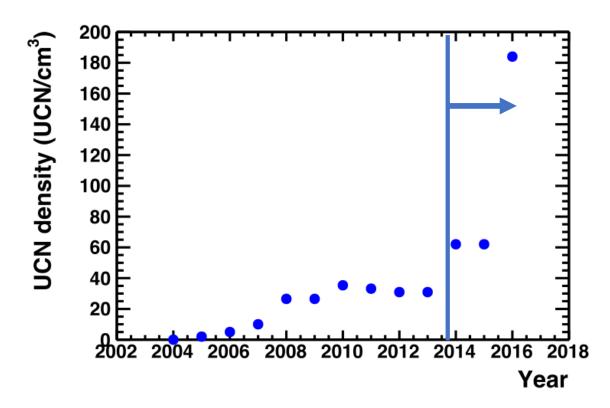



| Parameters                                               | Values |
|----------------------------------------------------------|--------|
| E(kV/cm)                                                 | 12.0   |
| N(per cell)                                              | 39,100 |
| T <sub>free</sub> (s)                                    | 180    |
| T <sub>duty</sub> (s)                                    | 300    |
| α                                                        | 0.8    |
| $\sigma$ /day/cell (10 <sup>-26</sup> e-cm)              | 5.7    |
| σ/day (10 <sup>-26</sup> e-cm)<br>(for double cell)      | 4.0    |
| σ/year (10 <sup>-27</sup> e-cm)<br>(for double cell)     | 2.1    |
| 90% C.L./year (10 <sup>-27</sup> e-cm) (for double cell) | 3.4    |

#### UCN source





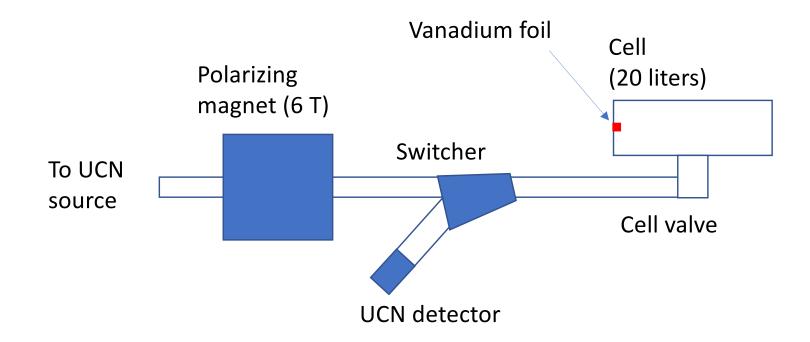



# UCN source upgrade

MICHIGAN

- Simulation based optimization of cryostat and moderator geometry
- Replaceable moderator: New flapper valve design: Modify UCN tee



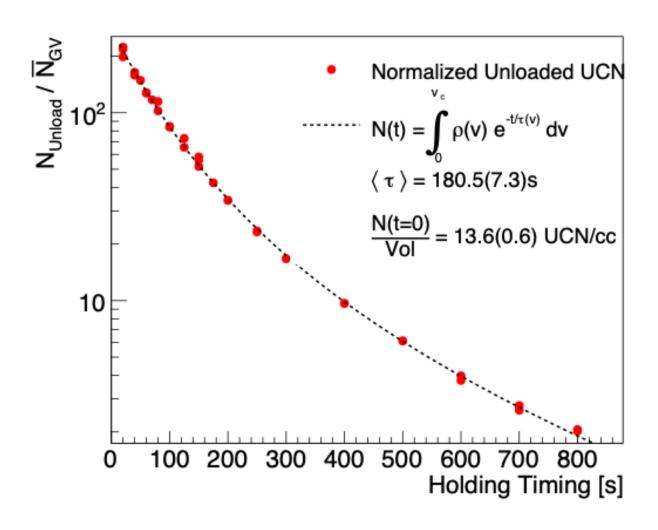

The source is shown to perform as modeled. The UCN density measured at the exit of the biological shield was **184(32)** UCN/cm<sup>3</sup>, a fourfold increase from the highest previously reported



# Storage cell Measurement



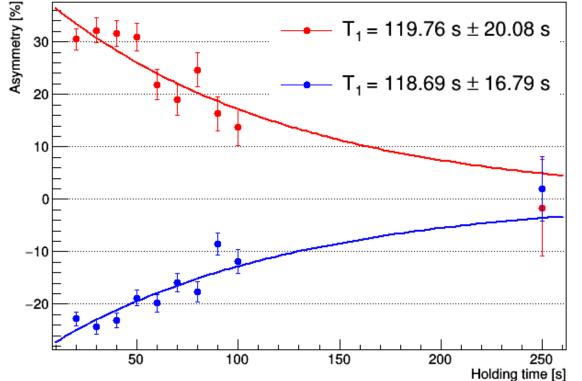
$$^{51}\text{V} + \text{n} \rightarrow ^{52}\text{V} \rightarrow ^{52}\text{Cr} + \beta + \gamma \text{ (1.4 MeV)}$$




PHYSICAL REVIEW C 97, 012501(R) (2018)

The <u>polarized UCN</u> density stored in an external chamber was measured to be **39(7) UCN/cm3** 

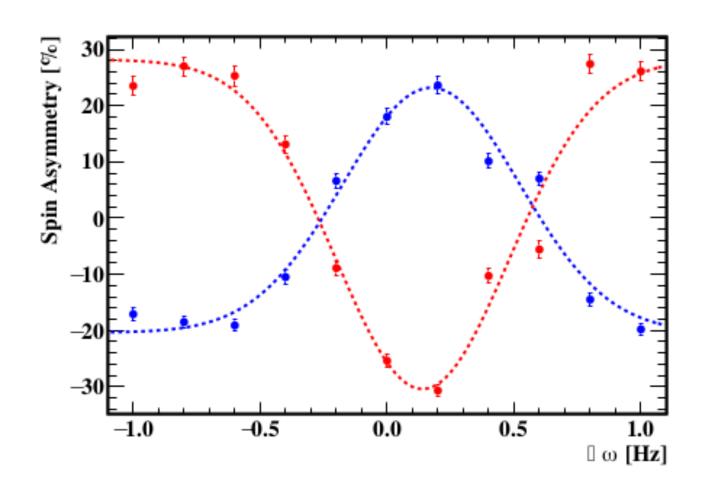




## Storage time measurement



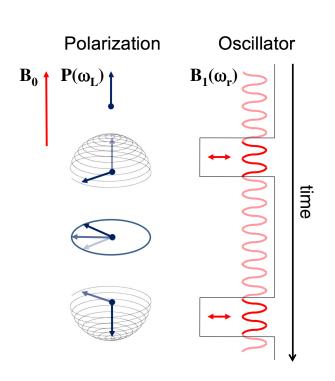
#### T<sub>1</sub> with dPS coated cell

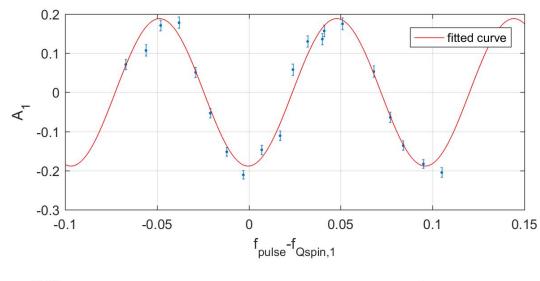


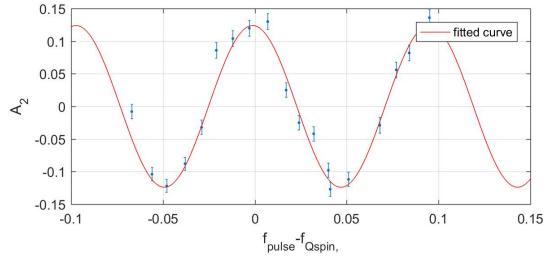





The measured T1 indicates a field gradient of 100 nT/m, much worse than the measured gradient of a few nT/m in the absence of the cell and electrodes. This indicates existence of some localized magnetization.


#### Rabi measurement




## Ramsey curve with $\tau$ =10 s

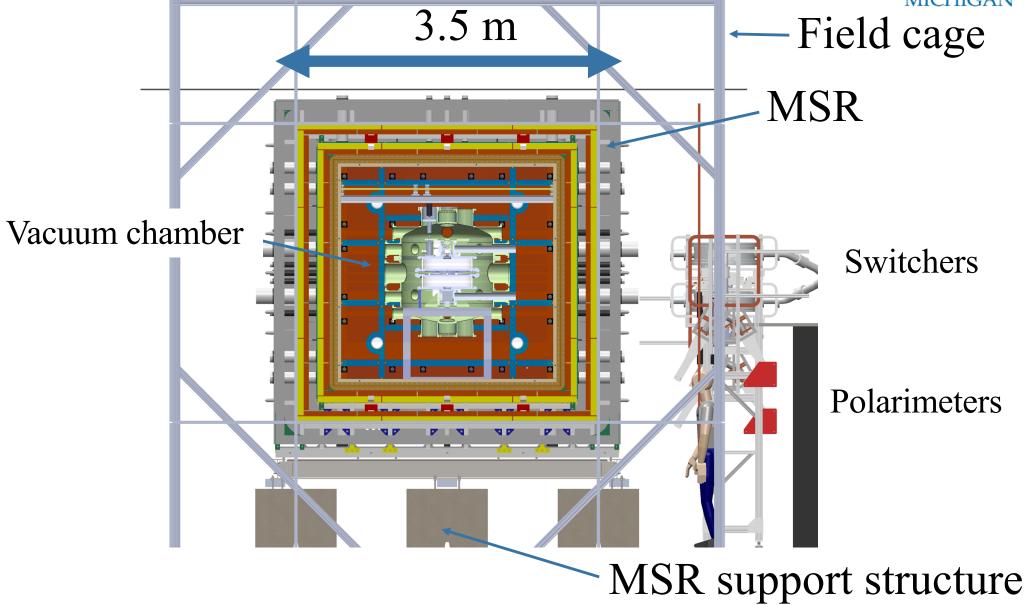








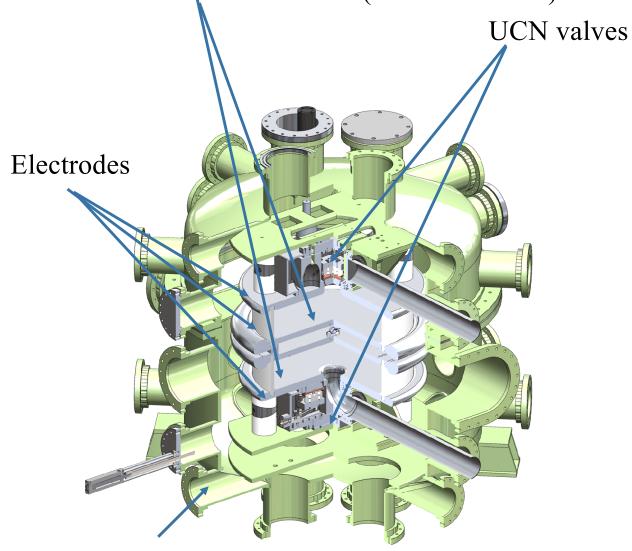
T2 ~ 20 s



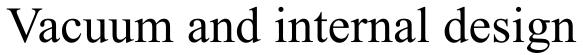



| Parameter                                     | Symbol          | Units        | Values |  |  |  |
|-----------------------------------------------|-----------------|--------------|--------|--|--|--|
| Electric field                                | E               | kV/cm        | 12     |  |  |  |
| UCN per chamber                               | N               |              | 39,000 |  |  |  |
| Free Precession Time                          | $T_{free}$      | $\mathbf{S}$ | 180    |  |  |  |
| Cycle Time                                    | $T_{ m cycle}$  | $\mathbf{S}$ | 300    |  |  |  |
| Polarization Product                          | $\alpha = AP_0$ |              | 0.8    |  |  |  |
| B-field gradient                              | $\nabla B$      | (nT/m)       | 0.3    |  |  |  |
| B-field stability                             | $\Delta B$      | (fT/500 s)   | 50     |  |  |  |
| Gradient/stability monitorng (fT/15 cm/500 s) |                 |              |        |  |  |  |

#### Overview





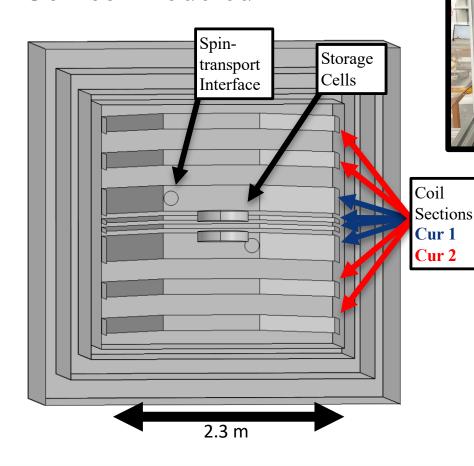


#### Vacuum and internal design

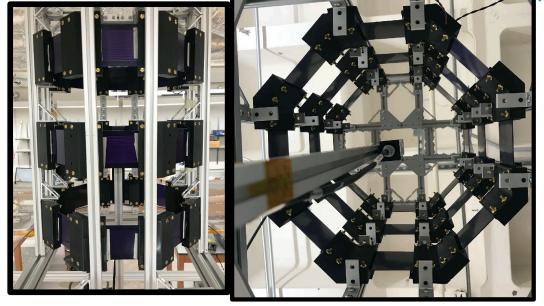


Precession chambers (50 cm diameter)



Vacuum chamber: composite insulating material



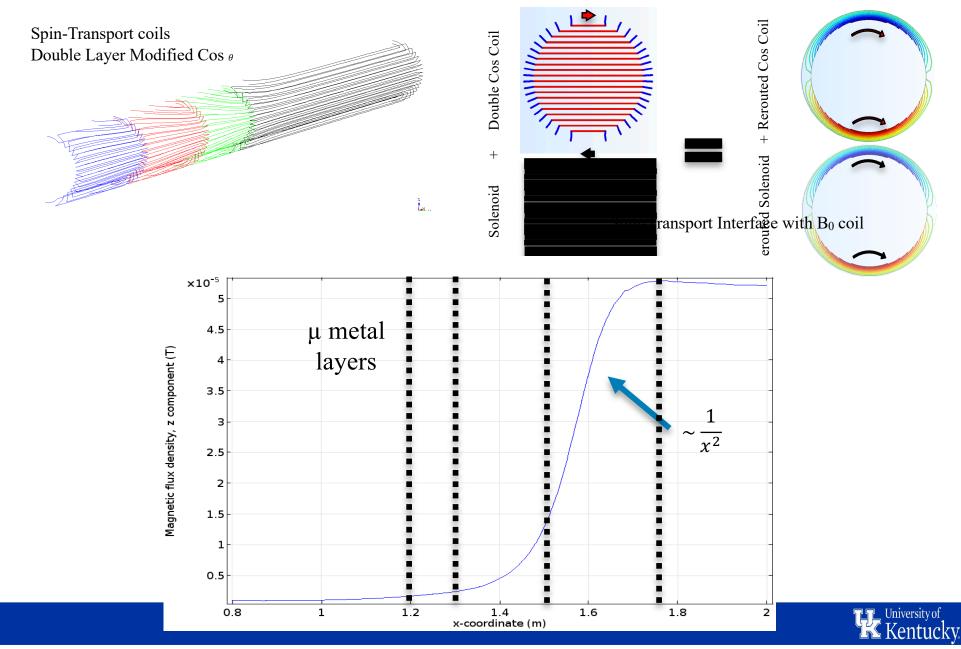



#### B<sub>0</sub> Coil (J. Brewinton, A. Palamure, B. Plaster)

- Octagon-shaped multi-gap solenoid
- Spin-transport coil interface
- Comsol modeled

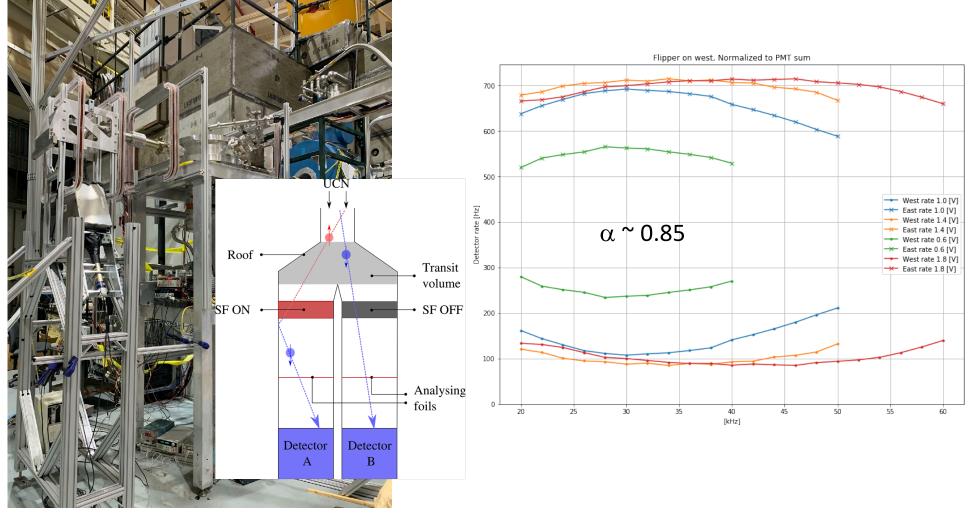





1/7<sup>th</sup> scale prototype

1/2 scale prototype will be tested in the small MSR

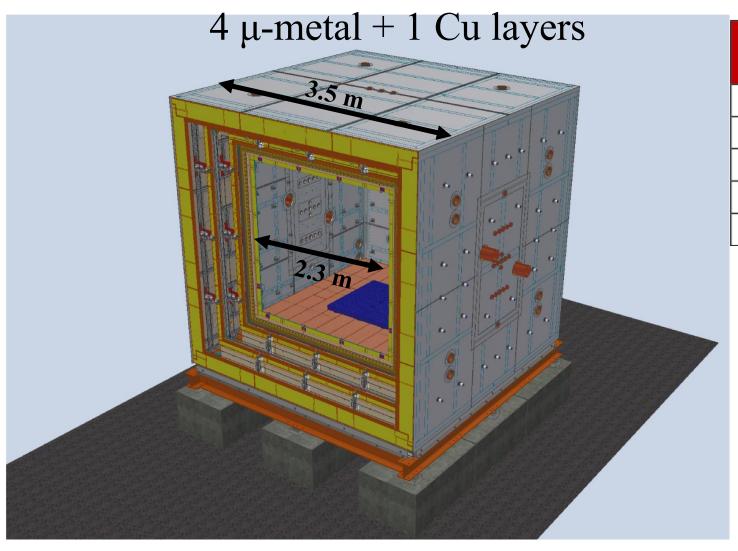



#### Spin transport into MSR and B<sub>0</sub>





#### Polarimeter – measures two spin states

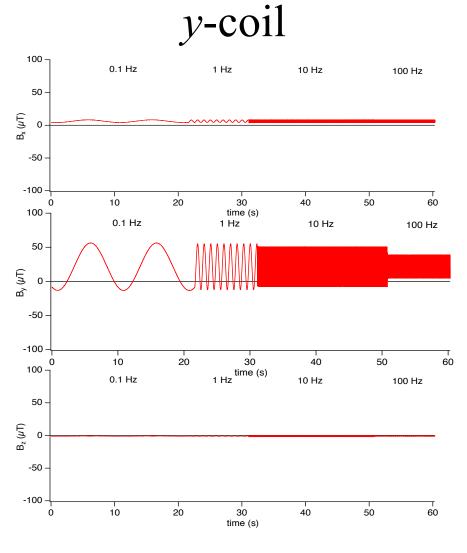





#### **MSR**

#### Designed in collaboration with MSL; Constructed in UK, installation underway MSC






| Frequency<br>(Hz) | SF         |
|-------------------|------------|
| 0.01              | 100,001    |
| 0.1               | 100,001    |
| 1                 | 1,000,001  |
| 10                | 10,000,001 |
| 100               | 10,000,001 |

## Field cage MSR Evaluation and cancellation of external fields:







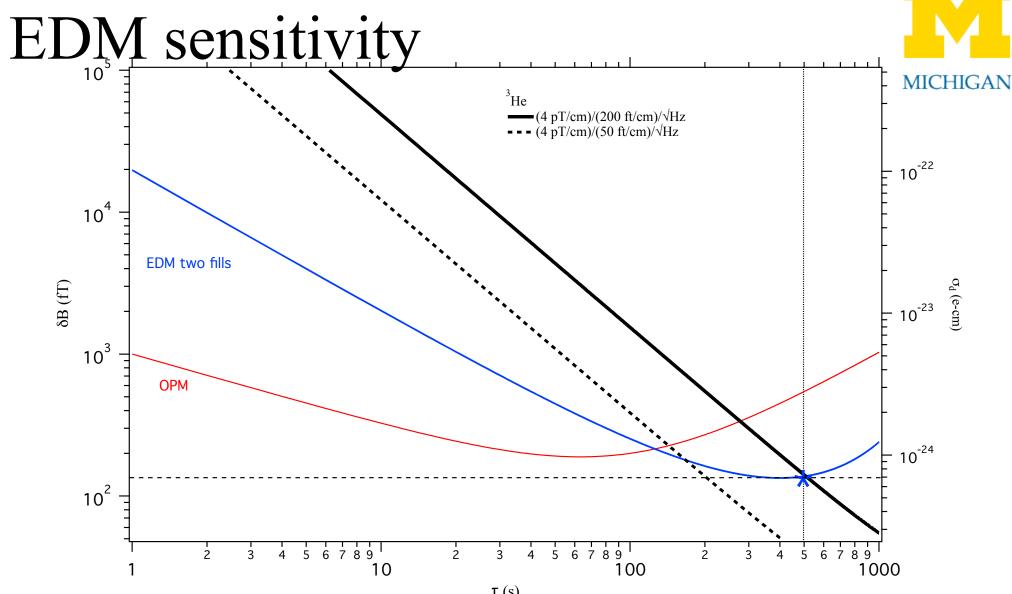
### Magnetometry Requirements



UCNs
$$\omega_{u/d}^{+/-} = \gamma_n \left( B^{+/-} + \frac{\partial B^{+/-}}{\partial z} \Delta z_n \right) + 2 \frac{d_n E}{\hbar}$$

Magnetometers
$$\omega_{X1/2}^{+/-} = \gamma_X \left( B^{+/-} + \frac{\partial B^{+/-}}{\partial z} \Delta z_X \right) + \Delta \omega_{X1/2}^{+/-}$$

EXM1
$$d$$


$$d$$

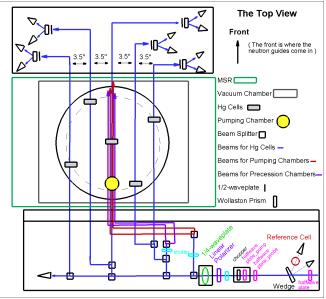
EXM2

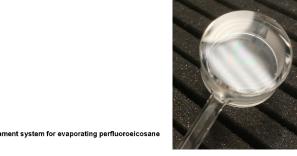
9 Unknowns

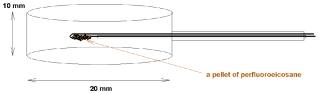
$$B^+, B^-, \frac{\partial B^+}{\partial z}, \frac{\partial B^-}{\partial z}, \Delta \omega_{X1}^+, \Delta \omega_{X2}^+, \Delta \omega_{X1}^-, \Delta \omega_{X2}^-, d_n$$
Magnetometer drift

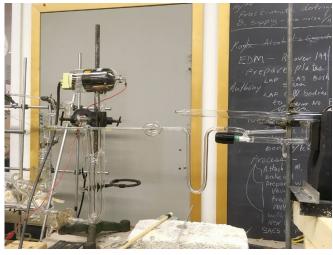
$$\Delta\omega_1 - \Delta\omega_2 \ll \frac{\gamma_X}{\gamma_n} \frac{2E\sigma_d}{\hbar}$$





Combine commercial OPMs and custom <sup>199</sup>Hg Magnetometers <sup>199</sup>Hg (<sup>3</sup>He) comagnetometry incorportated in design


#### Hg-199 (co) magnetometers: (J Chen, IU)



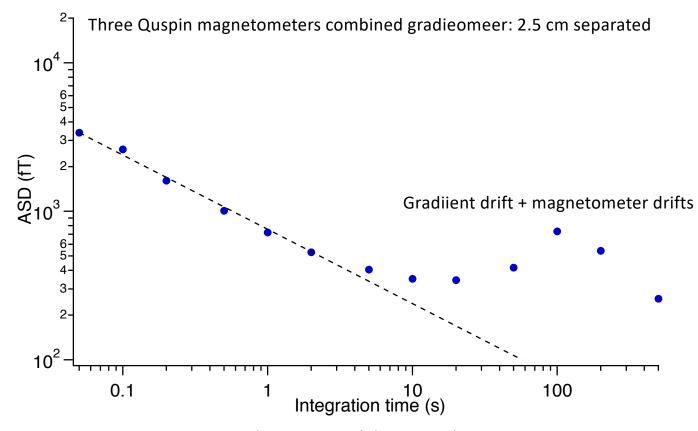


- Optics setup for nEDM@LANL
- Hg cells fabrication and study.
  - Perfluoroeicosane (C20F42) as the wall coating towards the HV mercury cell
  - Reference cell with natural Hg and Helium for feedback laser signal
- Design and fabricate the feedback locking circuit so the laser locks at two frequencies during the pump and probe phases with a Hg reference cell.







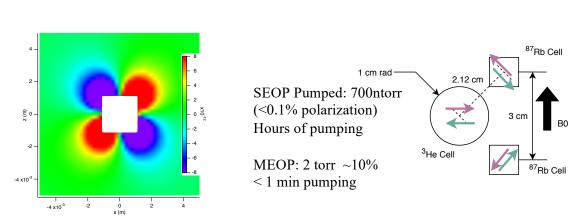





# OPMs: Optically pumped alkali magnetometers (Rb, Cs): F. B. Hills

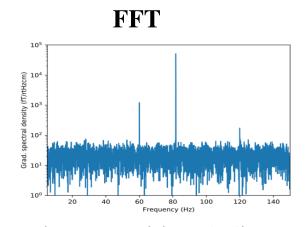


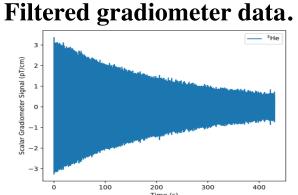










- <sup>3</sup>He is "nearly perfect 2-state system"
- Collaboration with Twinleaf LLC (M. Limes, T. Kornack) (pump-probe <sup>87</sup>Rb gradiometer OMG)





-4370 -4380 -4390 -4400 -5 10 15 20 25 30 35





2/18/21





Les Houches nEDM Werkshop - Tim Chupp





























Northwestern





