

The nEDM collaboration

The n2EDM experiment

Talk by I. Rienäcker

Paul Scherrer Institute

Outlines

- >n2EDM measurement principle & setup
- >Statistical sensitivity
- ➤ Main systematic effects
- ➤ Towards commissioning

On the way to n2EDM

nEDM

 $d_n < 1.8 \times 10^{-26} \,\mathrm{e} \,\mathrm{cm} \,(90\% \,\mathrm{C.L.})$

C. Abel et al. Phys. Rev. Lett. 124 (2020) 081803

Talk by N. Ayres

Sensitivity improvements:

- ➤ Increase in statistics
- ➤ Better-controlled systematics

n2EDM

1 x 10⁻²⁷ e cm

with perspectives of further improvement

N. Ayres *et al.*, submitted to EPJ C (2021) https://arxiv.org/abs/2101.08730

On the way to n2EDM

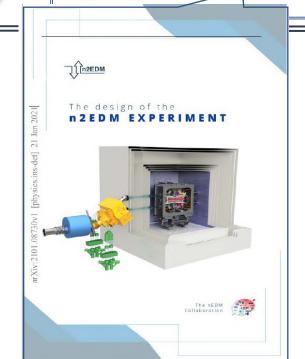
nEDM

 $d_n < 1.8 \times 10^{-26} \text{ e cm (90\%C.L.)}$

C. Abel et al. Phys. Rev. Lett. 124 (2020) 081803

Talk by N. Ayres

Sensitivity improvements:


- > Increase in statistics
- ➤ Better-controlled systematics

n2EDM

1 x 10⁻²⁷ e cm

with perspectives of further improvement

N. Ayres *et al.*, submitted to EPJ C (2021) https://arxiv.org/abs/2101.08730

On the way to n2EDM

nEDM

 $d_n < 1.8 \times 10^{-26} \text{ e cm (90\%C.L.)}$

C. Abel et al. Phys. Rev. Lett. 124 (2020) 081803

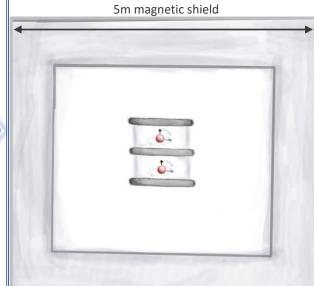
Talk by N. Ayres

Sensitivity improvements:

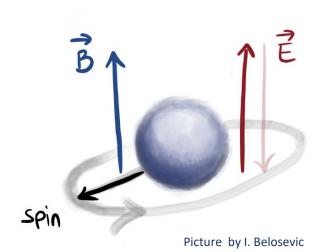
- Increase in statistics
- ➤ Better-controlled systematics

n2EDM

1 x 10⁻²⁷ e cm


with perspectives of further improvement

N. Ayres *et al.*, submitted to EPJ C (2021) https://arxiv.org/abs/2101.08730


Merge of 2 concepts:

- ➤ Large double-chamber setup
- ➤ Dual magnetometry

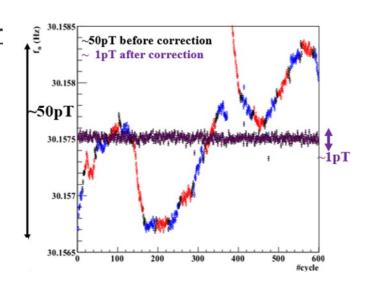
Measuring nEDM

Measure frequency

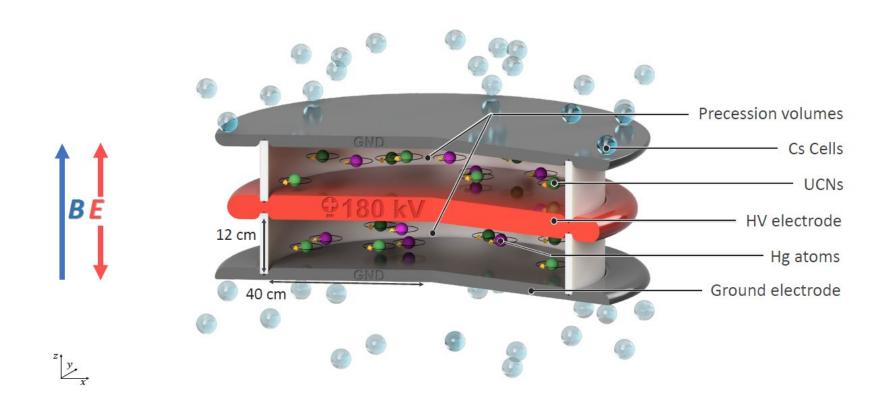
$$2\pi f = \frac{2\mu}{\hbar} B \pm \frac{2d}{\hbar} |E|$$

$$f(\uparrow\uparrow) - f(\uparrow\downarrow) = -\frac{2}{\pi\hbar} \frac{d}{E}$$

Control of magnetic field is essential!


Magnetic-field drifts?

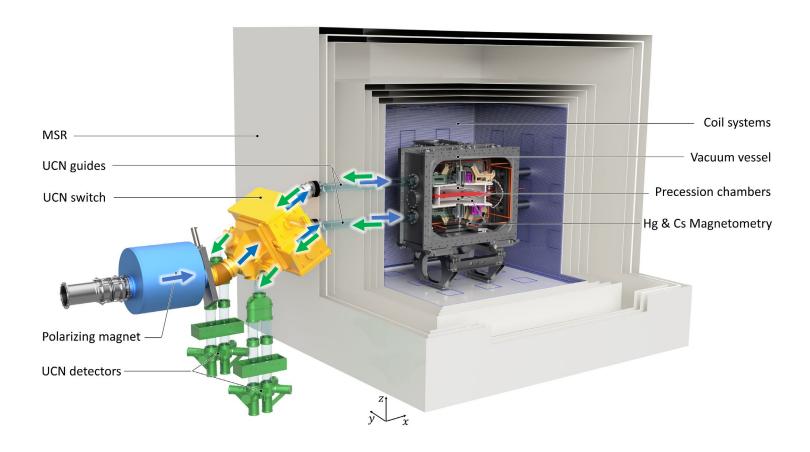
f -> ratio R


Mercury co-magnetometer (volume-averaged field)

K. Green *et al.*, Nucl. Instr. Methods Phys. Res., Sect. A **404**, 381 (1998)

$$R = \frac{f_{\scriptscriptstyle n}}{f_{\scriptscriptstyle Hg}} = \frac{\gamma_{\scriptscriptstyle n} B_{\scriptscriptstyle n}}{\gamma_{\scriptscriptstyle Hg} B_{\scriptscriptstyle Hg}}$$

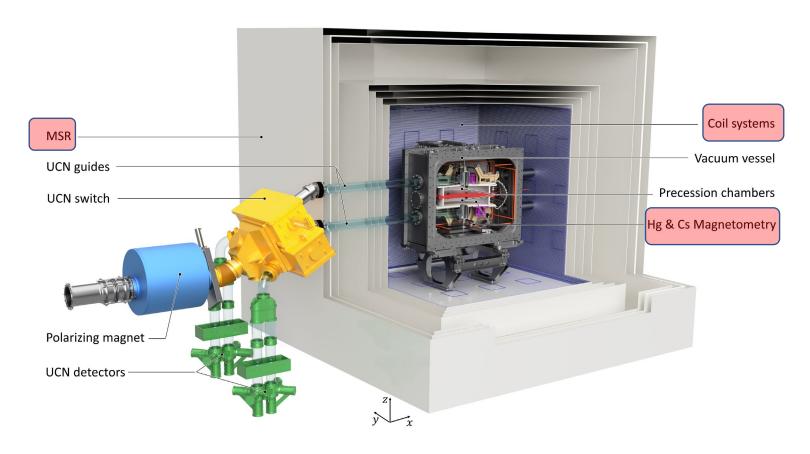
Double-chamber setup



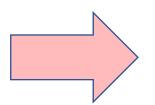
$$d_{\rm n} = \frac{\pi \hbar f_{\rm Hg}}{2|E|} \left(\mathcal{R}_{\uparrow\downarrow} - \mathcal{R}_{\uparrow\uparrow} \right)$$

$$d_{\rm n} = \frac{\pi \hbar f_{\rm Hg}}{4|E|} \left(\mathcal{R}_{\uparrow\downarrow}^{\rm TOP} - \mathcal{R}_{\uparrow\uparrow}^{\rm TOP} + \mathcal{R}_{\uparrow\downarrow}^{\rm BOT} - \mathcal{R}_{\uparrow\uparrow}^{\rm BOT} \right)$$

The n2EDM setup



Procedure:


- → Polarized UCNs fill the chambers
- Spin-precession in the chambers (Ramsey cycle)
- UCNs are guided towards detectors

Talk by W. Saenz

The n2EDM setup

Larger setup -> more challenges to provide and monitor magnetic field

- ➤ Magnetic-field shielding
- ➤ Magnetic-field generation
- ➤ Magnetic-field measurement

Statistical sensitivity

Sensitivity:
$$\sigma(f) = \frac{n}{2\alpha T E \sqrt{N}}$$

Talk by G. Zsigmond n2EDM simulations

- α Visibility of resonance
- T Time of free precession
- N Number of neutrons
- E Electric field strength

Required	magnetic-field	conditions:
		1 1

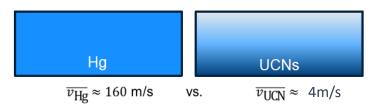
(over measurement cycle)

- ➤ Uniformity ~170pT
- Stability ~25fT

chamber diameter D DLC & dPS 47 cm DLC & dPS 80 cm N (per cycle) 15'000 121'000 121'000 180 s 180 s E 11 kV/cm 0.75 0.8 15 kV/cm 0.8 $σ(f_n)$ per cycle 9.6 μHz 3.2 μHz $σ(d_n)$ per day 11 × 10 ⁻²⁶ e cm 2.6 × 10 ⁻²⁶ e cm $σ(d_n)$ (final) 9.5 × 10 ⁻²⁷ e cm 1.1 × 10 ⁻²⁷ e cm		nEDM	n2EDM
T 180 s 180 s E 11 kV/cm 15 kV/cm α 0.75 0.8 $\sigma(f_n)$ per cycle 9.6 μHz 3.2 μHz $\sigma(d_n)$ per day 11 × 10 ⁻²⁶ e cm 2.6 × 10 ⁻²⁶ e cm			22000
$\sigma(d_n)$ per day 11 × 10 ⁻²⁶ e cm 2.6 × 10 ⁻²⁶ e cm	T E	180 s 11 kV/cm	180 s 15 kV/cm
27	$\sigma(f_n)$ per cycle	9.6 μHz	3.2 μHz
$\sigma(d_n)$ (final) 9.5 × 10 ⁻²⁷ e cm 1.1 × 10 ⁻²⁷ e cm	$\sigma(d_n)$ per day	$11 \times 10^{-26} e \text{ cm}$	$2.6 \times 10^{-26} e \text{ cm}$
	$\sigma(d_n)$ (final)	$9.5 \times 10^{-27} e \text{ cm}$	$1.1 \times 10^{-27} e \text{ cm}$

Systematics

Main source: Magnetic-field stability and homogeneity


- C. Abel et al., Phys.Rev.A 99 (4) (2019) 042112
- G. Pignol, Phys. Rev. Lett. B 793, 440 (2019)
- C. Abel et al., Phys.Rev. A 101 (5) (2020) 053419
- C. Abel et al., Mapping of the magnetic field to correct systematics, in preparation for Phys. Rev. A (2021)

Key contribution: Mercury co-magnetometer

UCN & Hg story...

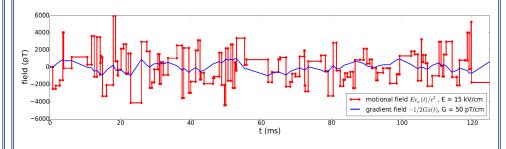
Gravitational shift

Different density distribution

- -> Center-of-mass offset $\langle z \rangle$
- > Frequency shift:

$$egin{align} \delta_{
m grav}^{
m TOP} &= G_{1,0} \; rac{\langle z
angle_{
m TOP}}{B_0} \ \delta_{
m grav}^{
m BOT} &= G_{1,0} \; rac{\langle z
angle_{
m BOT}}{B_0} \ \end{array} \hspace{0.5cm} \langle z
angle_{BOT} = 0.9mm \ \langle z
angle_{BOT} = 1.2mm \end{array}$$

> False EDM:


$$\delta d_{\rm n} = \frac{\hbar \gamma_{\rm n}}{4E} (\langle z \rangle_{\rm BOT} - \langle z \rangle_{\rm TOP}) \delta G(V)$$

False EDM due to "vxE" effect

Leading systematics

$$\mathbf{B}_m = \mathbf{E} \times \mathbf{v}/c^2$$

Interplay between motional magnetic field and magnetic-field gradients

$$d_{n \leftarrow \text{Hg}}^{\text{false}} = -\frac{\hbar |\gamma_n \gamma_{\text{Hg}}|}{2c^2} \langle x B_x + y B_y \rangle$$

$$d_{n \leftarrow \text{Hg}}^{\text{false}} = \frac{G_{1,0}}{1 \, \text{pT/cm}} \times 1.28 \times 10^{-26} \, e \, \text{cm}.$$

Talk by T. Bouillad

Control of gradients is important!

We expect to control systematics on the level of ${\sim}5\times10^{-28}$

Magnetic-field requirements

- ➤ Magnetic-field shielding
- ➤ Magnetic-field generation
- ➤ Magnetic-field measurement

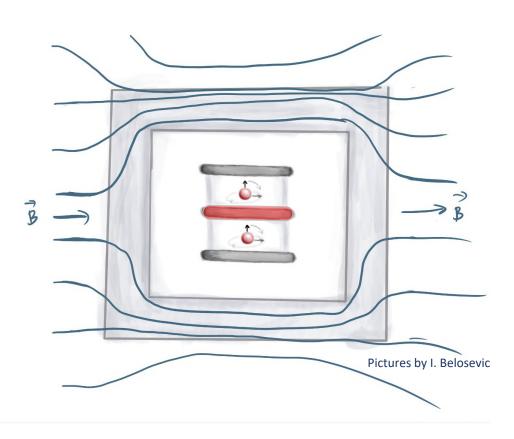
(over measurement cycle)

Related to statistical errors

Uniformity < 170pT Stability < 25fT

Related to systematical errors

Co-magnetometer accuracy < 100fT


Accuracy of the degree 3 mode: δG_3 < 20fT/cm

Accuracy of the degree 5 mode: δG_5 < 20fT/cm

Dipoles close to electrode < 20pT at 5cm

So how to fulfill these requirements in practice?

Magnetic shielding

Magnetic shielding: passive & active

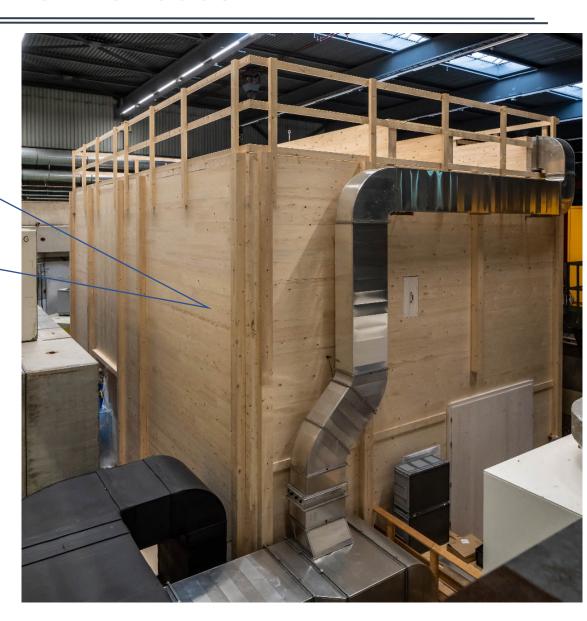
Talk by G. Bison

Talk by S. Emmenegger

Magnetically-shielded room (MSR)

Passive shielding

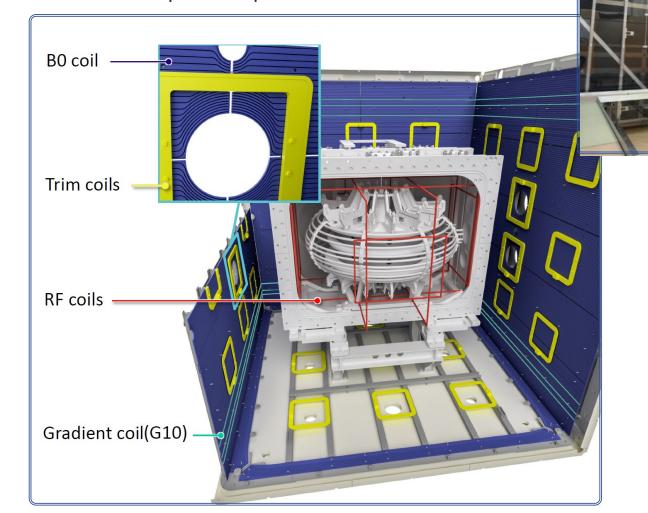
- 6 mu-metal layers
- Inner dimensions 2.93m x 2.93m x 2.93m
- Quasi-static shielding factor 100'000
- Residual fields < 150 pT (in central volume)


M. Rawlik et al., Am. J. Physics 86(8), 602 (2018)

- 8 actively-controlled coils
- Spanning a volume of ~1000m^3
- Compensates field disturbances from outside
- Stable and uniform magnetic field around MSR

Thermohouse

Thermohouse



Magnetic-field generation: coil systems

- \triangleright Produce a very uniform B0 field (1 μ T)
- Produce specific gradients
- ➤ Hold the UCN polarisation
- ➤ Neutron spin manipulation

Talk by C. Crawford

Magnetic-field measurement

Talk by S. Touati

Talk by D. Pais

Talk by K. Svirina

Hg magnetometry

Polarized Hg atoms (laser readout)

Function:

- -Correction field drifts
- -Compensation of systematics related to first-order gradients

Cs magnetometry

Array of 112 Cs sensors

Function:

Instantaneous measurement of magnetic-field uniformity

Mapping

Based on fluxgate sensor

Function (Offline):

- -Coil's cartography
- -Control high-order gradients

- G. Ban et al., Nucl. Instrum. Methods A 896, 129 (2018)
- C. Abel et al., Phys.Rev. A 101 (5) (2020) 053419
- C. Abel et al., Mapping of the magnetic field to correct systematics, in preparation for Phys. Rev. A (2021)

Towards commissioning

- MSR with record performance is commissioned
- AMS installation ongoing

Next:

Installation of coil system (ready)
Vacuum tank (ready)
Precession chambers

2022 Commissioning of full apparatus and start data taking

