A study of liquid helium scintillation in the presence of an electric field for the nEDM@SNS experiment

Takeyasu Ito Los Alamos National Laboratory February 16, 2021

nEDM2021 Workshop, Les Houches, France

LA-UR-21-21364

Outline

- Motivation
- Introduction to LHe scintillation
- Measurement with an alpha source
- Ionization current measurement with a beta source
- Measurement with a conversion electron source
- Implications for nEDM@SNS
- Summary

LHe scintillation in nEDM@SNS ³He as spin analyzer/ LHe as detector

• ³He-n reaction cross section

$$\overrightarrow{He} \overrightarrow{p_3} \overrightarrow{n} \overrightarrow{p_n} \neq 1 - p \overrightarrow{p_3} \overrightarrow{p_6} \otimes \left[(\gamma_n - \gamma_3) Bt \right] \qquad \begin{array}{c} \sigma(\text{parallel}) < 10^2 \text{ b} \\ \sigma(\text{antriparal}) \overrightarrow{r_n} \neq 1 \end{array} & \begin{array}{c} \sigma(parallel) < 10^2 \text{ b} \\ \chi_n \neq 0 \end{array} & \begin{array}{c} \sigma(parallel) < 10^2 \text{ b} \\ \sigma(parallel) \neq 0 \end{array} & \begin{array}{c} \sigma(parallel) < 10^2 \text{ b} \\ \chi_n \neq 0 \end{array} & \begin{array}{c} \sigma(parallel) < 10^2 \text{ b} \\ \chi_n \neq 0 \end{array} & \begin{array}{c} \sigma(parallel) < 10^2 \text{ b} \\ \chi_n \neq 0 \end{array} & \begin{array}{c} \sigma(parallel) < 10^2 \text{ b} \\ \sigma(parallel) \neq 0 \end{array} & \begin{array}{c} \sigma(parallel) < 10^2 \text{ b} \\ \chi_n \neq 0 \end{array} & \begin{array}{c} \sigma(parallel) < 10^2 \text{ b} \\ \sigma(parallel) \neq 0 \end{array} & \begin{array}{c} \sigma(parallel) < 10^2 \text{ b} \\ \sigma(parallel) \neq 0 \end{array} & \begin{array}{c} \sigma(parallel) < 10^2 \text{ b} \\ \sigma(parallel) \neq 0 \end{array} & \begin{array}{c} \sigma(parallel) < 10^2 \text{ b} \\ \sigma(parallel) \neq 0 \end{array} & \begin{array}{c} \sigma(parallel) < 10^2 \text{ b} \\ \sigma(parallel) \neq 0 \end{array} & \begin{array}{c} \sigma(parallel) < 10^2 \text{ b} \\ \sigma(parallel) \neq 0 \end{array} & \begin{array}{c} \sigma(parallel) = 0 \end{array} & \begin{array}{c} \sigma(paralle) = 0 \end{array} & \begin{array}{c} \sigma(paralle) = 0$$

• ³He-UCN reaction rate

€

$$1 - \overrightarrow{p_3} \cdot \overrightarrow{p_n} = 1 - p_3 p_n \cos\left[(\gamma_n - \gamma_3)Bt\right] \qquad |\gamma_n - \gamma_3| \approx |\gamma_n|/10$$

Detect Scintillation light from the reaction products traveling in LHe

no change in ω_3

• Signature of EDM would appear as a shift in $\omega_3 - \omega_n$ corresponding to the reversal of E with respect to B with

Why do we worry about the electric field?

- How much does the light yield from the n-³He capture events get suppressed at E = 75 kV/cm?

Scintillation yield per energy deposition for electrons is assumed to be 3.5 times larger than that for n-³He capture events

• Similarly, how much does the light yield from neutron beta decay events get suppressed at E = 75 kV/cm?

How does the scintillation yield change if an electric field is applied?

Two types of particles

Fast/light particles

- Low ionization density
- Particles of this type include:
 - Electrons
 - cosmic ray muons

<u>Heavy/slow particles</u>

- High ionization density
- Particles of this type include:
 - alphas
 - reaction products from neutron capture on 3He (proton and triton)

Specific energy loss in LHe

dE/dX (MeV/(g/cm2))

LHe scintillation

Ionization track

$$He^{+} + e \rightarrow He^{+} + He^$$

- Singlet state: decays within ~ 1 ns emitting a ~ 80 nm photon (prompt scintillation)
- $\operatorname{He}_{2}(A^{1}\Sigma_{u}^{+})^{2}$ $\operatorname{He}_{2}(A^{1}\Sigma_{u}^{+})^{2}$ $\operatorname{He}_{2}(A^{1}\Sigma_{u}^{+})^{2}$ $\operatorname{He}_{2}(A^{1}\Sigma_{u}^{+})^{2}$ $\operatorname{He}_{2}(A^{1}\Sigma_{u}^{+})^{2}$

€

• Triplet state: has a lifetime of ~ 10 s in vacuum. In high ionization density environment, gives delayed photon emission through Penning ionization (destructive interaction with each other)

Fast/light particles vs slow/heavy particles

The relative number of excitations to ionizations is 0.31 to 0.69, respectively.

The charges are most likely to recombine with their partners \rightarrow geminate recombination (Onsager).

 $r_{0:}$ separation btw. ions in a pair $d_{0:}$ separation btw pairs.

Electron-ion pairs overlap \rightarrow columnar recombination (Jaffe, Kramer).

Cylindrical Gaussian charge distribution with width ~ 60 nm.

Effect of an electric field on LHe scintillation

Distribution of charges and recombination depends on the type of ionizing particle.

Energy deposition

Excitations (Field independent)

(alphas, protons, tritons, etc.)

Electric field suppresses recombination \rightarrow suppression in scintillation light production & ionization current

Three experiments

- Scintillation measurement with alpha particles
 - $E \le 45 \text{ kV/cm}$
 - $0.2 \text{ K} \le \text{T} \le 1.1 \text{ K}$
 - Source: ²⁴¹Am (a energy: 5.5 MeV)
- Ionization current measurement with electrons
 - $E \leq 10 \text{ kV/cm}$
 - Source: ⁶³Ni (β endpoint energy: 66 keV)
- Scintillation measurement with electrons and alpha particles
 - $E \leq 40 \text{ kV/cm}$
 - 0.44 K ≤ T ≤ 3.12 K
 - Sources: ²⁴¹Am (α energy: 5.5 MeV) and ¹¹³Sn (conversion electron energy: 364 keV)

Experimental setup for alpha scintillation measurements

Results for alpha scintillation

Prompt (first 80 ns)

- The prompt yield reduction is about 15% at 45 kV/cm.
- Very little temperature dependence in both the scintillation yield at 0 field and the effect of E field.

 The after pulse counts reduce with both decreasing temperature and increasing E field.

Columnar theory of recombination

Ε

E: electric field

 α : recombination coefficient

Langevin relation: $\alpha = e(\mu_+ + \mu_-)/\varepsilon_0$

- Ignore the diffusion term (Kramers): valid in dense fluid
- Furthermore, when $\mu_{+}=\mu_{-}$, the theory is independent of mobility.
- If a cylindrical Gaussian charge distribution is assumed, the theory only depends on the radius of the column *b*:

$$n_{\pm}(t=0) = \frac{n_0}{\pi b^2} e^{-r^2/b^2}$$

The fraction of ions that do not recombine and are observed as ionization current is given by

$$f_{ion} = \frac{2f}{\sqrt{\pi}} \int_{0}^{\infty} \frac{\sqrt{\zeta} d\zeta}{f e^{\zeta} + 1} \approx \frac{2}{3} f \left(-\log f\right)^{2/3} \text{ for small } f, \text{ where } f = \frac{\sqrt{\pi} b E}{N_0 e^{\zeta}}$$

Fitting the prompt data with the Columnar theory

Need to consider the contribution from excited atoms to the prompt scintillation

• Define:

$$x = \frac{P_R}{P_R + R_E}$$

- Estimate based on theoretical calculation of ionization process [1] gives x = 0.4
 - excitations : ionizations = 0.45 : 1 [1]
 - singlet atoms : triplet atoms = 5 : 1 [1]
 - singlet excimers : singlet excimers = 1:3
- This gets further modified by Hornbeck-Molnar process:

$$\operatorname{He}^{*}(n \ge 3) + \operatorname{He} \rightarrow \operatorname{He}_{2}^{+} + e^{-}$$

 1/3 of the atoms promoted to excited states will have n≥3, the other 2/3 having n = 2 [2], giving, x ~ 0.6.

[1] Sato, Okazaki, Ohno, Bull. Chem. Soc. Jpn. 47, 2174 (1974).[2] Berkowitz, J. Phys. B, 30, 81 (1997).

x = 0.6 gives b = 60 nm

Predicting LHe scintillation yield and its Efield dependence for n-³He capture events

- The difference in the ionization density between alphas and the n-3He capture that from alpha in the following ways:
 - quenching less.
 - The E field dependence also depends on the ionization density through the parameter $f = \frac{\sqrt{\pi}\epsilon_0 bE}{N_0 e}$

products (proton and triton) causes the scintillation from n-3He capture to differ from

• The high ionization density for both alphas and the n-3He capture products causes quenching of scintillation yield, due to nonradiative destruction of singlet species. (We expect 23% of deposited energy to be emitted as prompt scintillation in the absence of quenching but only 10% of the deposited energy is emitted as prompt scintillation.) The lower ionization density for the n-3He capture products makes the

Model for quenching and prediction for n-3He

Penning ionization of singlet excimers and atoms

These terms can be neglected

$$\frac{dn_s}{dt} = -\gamma_s \left(\kappa_{ss} n_s^2 + \kappa_{st} n_s n_t\right) + \kappa_{tt} \gamma_t n_t^2 - D_s \nabla^2 n_s - \frac{n_s}{\tau_s}$$

$$\kappa_{ss} = \frac{7}{4}, \ \kappa_{st} = \frac{3}{2}, \ \kappa_{tt} = -\frac{1}{4}$$

For every two excimers destroyed, a new one is formed, $\frac{1}{4}$ of the time in the singlet state and $\frac{3}{4}$ of the time in the triplet state.

The fraction of singlets that contribute to prompt scintillation

- If we know f_s for α induced scintillation, we can predict what f_s is for neutron capture reaction induced scintillation.
- For α induced scintillation, $f_s = 0.47$.
 - The fraction of the deposited energy going to the prompt scintillation is 10% whereas the expected value in the absence of quenching is 23%.
- $f_s = 0.47$ gives $\xi = 3.5$.
 - This gives $\Upsilon_s = 2.3 \times 10^{-9}$ cm³/s.

Ionization current from electron source and initial charge distribution

- Each ion-electron pair is spatially separated (geminate recombination).
- The electron and the ion are attracted by the Coulomb force while subject to the external electric field and Brownian motion.
- Condition for separation when no diffusion

$$r^2(1+\cos\theta_0) \ge \frac{2e}{4\pi\epsilon_0 E}$$

Therefore, ionization current and the initial charge distribution have a 1-to-1 correspondence

Experimental setup for electron scintillation measurements

Results for prompt signal (first 100 ns) Electrons

- The results for alphas are consistent with our previous results.
- For electrons, the electric field dependence for low temperature data are consistent with what is expected from the ionization current measurement.
- The low field data points for higher temperature data for electrons appear to be at odds with other data points.

Temperature dependence for zero field electron data

- discrepancy seen for low field, high temperature data.

This unexpected temperature dependence for low field data was the reason for the

• This, in turn, was caused by the finite recombination time, which has a strong temperature dependance due to the temperature dependent ion mobility

Finite recombination time for zero field scintillation yield

y(T)

Temperature dependent germinate recombination is described by the Debye-Smoluchowski equation.

$$\frac{\partial \rho(\vec{r},t)}{\partial t} = \nabla D \cdot \left(\nabla \rho + \frac{\rho}{kT} \nabla U \right)$$

- ρ: probability density of the ionelectron distance
- D: diffusion coefficient
- U: interaction energy between electron-ion pair

Onsager's theory corresponds to the solution of this equation in the limit of $t \rightarrow \infty$

Simulated spectrum at E = 75 kV/cm

Counts

Input/assumptions

Neutron capture

- We expect ~20 PE from V. Cianciolo's light collection R&D
- ~10% of deposited energy is emitted as prompt scintillation light at 75 kV/cm from our measurement with alphas and our model.
 - For alphas, 10% of energy is emitted as prompt from Adams, et al Phys. Lett. B 341, 431 (1995)

For beta background

- α/β ratio = 0.45 from our measurement
- The prompt scintillation light from neutron beta decay is reduced by 48% at 75 kV/cm compared to the zero field value from our measurement.

23

100

Summary

- yield from alphas and electrons.
- The results from alphas can be well described by the columnar theory of recombination.
- The results from electrons are consistent with our ionization current measurement.
- We observed for the first time the effect of finite recombination time for electrons.
- The results from alphas and our model for quenching predict that for n-3He capture events, ~10% of deposited energy to be emitted as prompt scintillation light at 75 kV/cm.
- The results from electrons indicate that the prompt scintillation light from neutron beta decay is reduced by 48% at 75 kV/cm compared to the zero field value.

• We have measured the electric field dependence of the prompt LHe scintillation

References

- T. M. Ito, S. M. Clayton, J. Ramsey, M. Karcz, C.-Y. Liu, J. C. Long, T. G.
- G. M. Seidel, T. M. Ito, A. Ghosh, and B. Sethumadhavan, "Charge 025808 (2014).
- Tang, Z. Tang, and W. Yao, "Effect of an electric field on liquid helium

Reddy, and G. M. Seidel, Phys. "Effect of an electric field on superfluid helium scintillation produced by α-particle sources," Rev. A 85, 042718 (2012).

distribution about an ionizing electron track in liquid helium," Phys. Rev. C 89,

• N. S. Phan, V. Cianciolo, S. M. Clayton, S. A. Currie, R. Dipert, T. M. Ito, S. W. T. MacDonald, C. M. O'Shaughnessy, J. C. Ramsey, G. M. Seidel, E. Smith, E. scintillation produced by fast electrons,", Phys. Rev. C 102, 035503 (2020).

