High Electric Field Studies in Liquid Helium for the NEDM@SNS Experiment

nEDM 2021 Conference

Grant Riley

Feb. 16 2021

LA-UR-21-21366

High Electric Field in nEDM@SNS

- Requirements
- Electric field up to 75 kV/cm in the measurement cells
- No direct feed line for HV due to thermal and magnetic constraints
- Minimal leakage current through the measurement cells, <1nA
- Electrode coating to keep Johnson noise and eddy current heating low, either Cu or GeCu
- Challenges
- Electrical breakdown in Liquid Helium (LHe) poorly understood
- Recent studies at LANL show dependance on LHe pressure dominates over other parameters from literature
- Electrical breakdown may damage electrodes or other components
- **R & D**
- Determine a breakdown probability for full scale system based on studies at smaller scale
- Study breakdown effect on electrode material
- Study breakdown mechanism, dependance on pressure/temperature
- Determine effects of electronics/lightguides on HV performance on half scale system

Previous High Electric Field R&D Program at LANL

- **Small Scale HV**
- Temperature down to 1.5 K, variable pressure
- Studied stainless steel electrodes up to 2 cm, up to 40 kV
- Studied distribution of breakdown voltage and time to breakdown
- Breakdown distribution study led to new understanding of area and pressure scaling
- Medium Scale HV
- 6 L Liquid Helium Volume, temperature down to 0.4 K, variable pressure
- Tested stainless steel electrodes and coated PMMA electrodes up to 12 cm, up to 100 kV
 - No breakdowns observed up to 85 kV/cm at few torr for PMMA electrodes
 - No breakdowns observed up to 105 kV/cm at a few torr for SS electrodes
- Pressure and area scaling give expectation that full scale system works, remains to be confirmed
- Studied leakage current through dielectric materials between electrodes (up to 50 kV)
- Observed scintillation in liquid helium at high electric field
- Cavallo Multiplier
- Large room temperature prototype
- Extensive simulation effort

Previous High Electric Field R&D Program at LANL

- **Small Scale HV**
- See N. Phan talk #19 (Next) Temperature down to 1.5 K, variable pressure
- Studied stainless steel electrodes up to 2 cm, up to 40 kV
- Studied distribution of breakdown voltage and time to breakdown
- Breakdown distribution study led to new understanding of area and pressure scaling
- **Medium Scale HV**
- 6 L Liquid Helium Volume, temperature down to 0.4 K, variable pressure
- Tested stainless steel electrodes and coated PMMA electrodes up to 12 cm, up to 100 kV
 - No breakdowns observed up to 85 kV/cm at few torr for PMMA electrodes
 - No breakdowns observed up to 105 kV/cm at a few torr for SS electrodes
- Pressure and area scaling give expectation that full scale system works, remains to be confirmed
- Studied leakage current through dielectric materials between electrodes (up to 50 kV)
- Observed scintillation in liquid helium at high electric field
- **Cavallo Multiplier**
- Large room temperature prototype
- Extensive simulation effort

Future High Electric Field R&D Program at LANL

- **Small Scale HV**
- Study HV dependance of coated PMMA electrodes and breakdown time dependance
- Medium Scale HV
- Study temperature dependance of breakdown between 0.4 K and 2 K
- Half Scale HV
- 40 L LHe Volume, temperature down to 1.5 K, variable pressure
- Study stainless steel electrodes and coated PMMA electrodes up to 30 cm, Half scale measurement electrodes, up to 200 kV – verify scaling from SSHV results
- Study electrode damage due to breakdown, leakage currents and effects of lightguides and measurement hardware on HV performance
- Further study of area scaling and time to breakdown
- **Cavallo Multiplier**
- Large cryogenic prototype
- Study voltage multiplication in cryogen, time to full voltage, heating, sparking behavior
- Develop program to mitigate sparking, heating

Future High Electric Field R&D Program at LANL

- **Small Scale HV**
- Study HV dependance of coated PMMA electrodes and breakdown time dependance
- **Medium Scale HV**
- Study temperature dependance of breakdown between 0.4 K and 2 K
- Half Scale HV
- 40 L LHe Volume, temperature down to 1.5 K, variable pressure
- Study stainless steel electrodes and coated PMMA electrodes up to 30 cm, Half scale measurement electrodes, up to 200 kV – verify scaling from SSHV results
- Study electrode damage due to breakdown, leakage currents and effects of lightguides and measurement hardware on HV performance
- Further study of area scaling and time to breakdown

Cavallo Multiplier

See M. Blatnik talk #20

- Large cryogenic prototype
- Study voltage multiplication in cryogen, time to full voltage, heating, sparking behavior
- Develop program to mitigate sparking, heating

Los Alamos National Lab Neutron Science Areas

- Area B
- Houses UCN experiments like LANL nEDM and UCN Tau
- Helium liquefaction equipment
- **Buliding 10**
- Houses the small scale high voltage (SSHV)
- Medium scale high voltage (MSHV)
- Room temperature high voltage (RTHV)
- **Staging Area**
- Houses the half scale high voltage (HSHV)
- Cavallo high voltage cryostat
- New construction includes a helium recovery system and new helium liquefaction equipment

High Voltage R&D Components in the Staging Area

Helium recovery system in the staging area

 Large scale cryogenic R&D activities in the Staging Area require a large quantity of LHe (1000 liters or more per cooldown). Recent increase in LHe price and limited availability have necessitated a recovery system.

Phase I:

- Capture boil-off He gas in a bag, compress it into a tube trailer, and liquefy it using the liquefiers in Area B.
- Engineering (over 200 hours) and large fraction of installation institutionally funded.
- Completed November 2020.

Phase II:

- Install a liquefier system in the staging area.
- LANL institutional funding received (~700K)
- To be completed in FY21

High pressure trailer manifold

Half Scale High Voltage System

- R&D system designed to study high voltage breakdown in superfluid liquid helium
- Study stainless steel electrodes
- Study coated PMMA electrodes
- PMMA electrodes shaped similarly to the nEDM@SNS experiment electrodes
- Study electrical breakdown probability for nEDM@SNS conditions at half scale
- Study effect of breakdowns on electrode material, surface finish, performance

Half Scale Electrode Shapes

Half Scale Electrodes With Measurement Cells

Uniform Field Electrodes

Half scale previous activity

- Previous cooldowns in February 2019, June 2020
- February cooldown: Could not cool CV below 70 K
- June cooldown: Automatic refill capability lost, cooldown aborted
- Between cooldowns
 - Capillary lines re-plumbed inside HSHV
 - Pre-cool dewar outfitted with new lid
 - Internal leak check of all components
 - Helium recovery system constructed and tested
- Goals of November Cooldown
 - Cool Helium bath, inner shield and CV to 4K
 - Cool CV to below 2.1K by pumping on it
 - Determine if 1K pot can cool itself and the central volume (CV) below the superfluid transition with CV sealed
 - Determine if capillary sizes for 1K pot are appropriate to maintain cooling
 - Test helium recovery system
 - Test helium bath heat exchanger
 - Test roots blower integration

Cooldown timeline

November 16th 4PM to November 29th at 5AM is a 300 hour period which breaks down into 3 major parts

Nitrogen cooldown

Proceeded very similarly to previous 2 cooldowns, relative slower cooling of CV, solved by further opening UIUC valves after several days.

Helium running

- Allocated 2x 500L dewars of liquid helium, achieved 4K in Helium bath, ~40K CV with first dewar
- Pushed for 2K CV with second dewar, Achieved!

System put into safe mode venting all volumes to helium recovery system and allowed to slowly warm

Demonstration of superfluid He in CV and 1K pot

- November 23
- Ruthenium Oxide sensor (ROX) in1K pot calibrated by Lakeshore from 40K to 5E-2K
- Calibration curve from 40K to 5.61K applied
 - Largest error in this region 47.33 mK
 - RMS error of fit in this region 13.69 mK
- Calibration curve from 5.61K to 0.95K applied
 - Largest error in this region 1.79 mK
 - RMS error of fit in this region 0.56 mK
- Used the same calibration for both sensors
- 2.17 K superfluid transition marked with red line

Demonstration of superfluid He in CV and 1K pot

- November 23
- Ruthenium Oxide sensor (ROX) in 1K pot calibrated by Lakeshore from 40K to 5E-2K
- Calibration curve from 40K to 5.61K applied
 - Largest error in this region 47.33 mK
 - RMS error of fit in this region 13.69 mK
- Calibration curve from 5.61K to 0.95K applied
 - Largest error in this region 1.79 mK
 - RMS error of fit in this region 0.56 mK
- Used the same calibration for both sensors
- 2.17 K superfluid transition marked with red line
- CV is shown to go below superfluid transition, while pumping on both CV and 1K pot
- CV is closed and 1K pot is refilled, pumping continues on 1K pot
- 1K pot cooling power shown to be sufficient to maintain and even further cool CV.
- Minimum CV temp. 2.048K, Minimum 1K pot temp. 2.057K

Room temperature HV apparatus

- Housed in building 10
- Non cryogenic high voltage test chamber
- Demonstrate the HV capabilities of the components to be installed in HSHV
- Radiation dose calculation required due to x-rays from created by potential breakdown
- Installed X-ray shielding material shell
- Work will inform how HSHV program will proceed

High voltage system addition

- Terminate the HV line in a ball electrode for first test
- Confirm superfluid temperature can be reached and maintained with additional heat load from HV structure
- Determine 200 kV can be delivered to CV

Conclusions & Future Work on HSHV

Successful commissioning cooldown!

- Superfluid temperature reached in 1K pot and CV
- Temperature maintained and further cooled while CV sealed
- Helium used: ~1300 liters in total

Recovery system operated successfully

- Estimated ~60% recovery efficiency
- Reduce helium usage and increase recovery efficiency in future cooldowns

Next steps

- Test high voltage capability and observe additional heat load on CV
- Perform HV area scaling studies in superfluid liquid helium with uniform field electrodes
- Perform HV studies with half scale measurement cell electrodes

Los Alamos National Laboratory Thank you 2/15/21 | 19