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The Geometric Phase is expected to be the largest
systematic uncertainty in the nEDM@SNS project
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Different Approaches Calculate P
Phase Shifts

« Explored in context of NEDM experiments
- Pendlebury et al. (2004), Lamoreaux and Golub
(2005), and Ignatovich (2008), *PSI (recent, 20157?) &

« Quantum Parameter Space

ecm)

- Pancharatnam (1956) and Berry (1984) fomtstyors o1 g
- Rotation Matrices

- Berry (1987) and Bliokh (2008) i
 Bloch Siegert Shift :

- Bloch and Siegert (1940) and Ramsey (1955) e
« Action Angle Variables and Differential Geometry Image from Pendlebury (2004)

- Hannay (1985) and Simon (1983)
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Approaches to Calculating Shifts

Pendlebury, 2004
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Approaches to Calculating Shifts

Our approach
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The NnEDM@SNS Technique o/ otim

For a spin-"2 particle (spin vector given by 7) in electric and magnetic fields, the
Hamiltonian is given by
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The NnEDM@SNS Technique o/ otim

For a spin-"2 particle (spin vector given by 7) in electric and magnetic fields, the
Hamiltonian is given by

For a spin that is at an angle from the field axes (for parallel fields), the particle
will precess with frequency

2ex - -
w1t = TIEI +y|B|
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The NnEDM@SNS Technique o/ otim

For a spin-"2 particle (spin vector given by 7) in electric and magnetic fields, the
Hamiltonian is given by
=2 (5. 8) -y (58

For a spin that is at an angle from the field axes (for parallel fields), the particle
will precess with frequency

2ex = -
wrt = ——I|E| + 15|
By flipping the direction of the electric field, the sign of the first term will change

and the subsequent difference in frequencies is used to determine the nEDM (d)

dex

Aw = wjp-wyy = %X|E| = H|E|
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The NnEDM@SNS Technique o/ otim

For a spin-"2 particle (spin vector given by 7) in electric and magnetic fields, the
Hamiltonian is given by

=2 (5. 8) -y (58
For a spin that is at an angle from the field axes (for parallel fields), the particle
will precess with frequency ;

ex

Wiy = TIEHYIEI

By flipping the direction of the electric field, the sign of the first term will change
and the subsequent difference in frequencies is used to determine the nEDM (d)

dex

Aw = w g -wry = %2|E| = L|E|
In order to reach the desired sensitivities of the nNEDM@SNS experiment, we are

very sensitive to any shifts in frequency that are proportional to the electric field
(known as linear-in-E shifts) as they will present themselves as a ‘false EDM’
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Frequency Shift

Frequency shifts arise when a strong magnetic
field ( Boz ) is perturbed by a weak perpendicular
field ( B+ ) that’s cycled around it

They interact to create a shifted effective field

— 2
— — — W
Bgff:B%_‘_ B0—70
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Magnetic fields seen by the
particle in its rotating frame

*Note: B, is greatly exaggerated in this
and following diagrams
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Magnetic Field Contribution @%

There are two causes of the false EDM effect

_—
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Byz
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Radial component to the gradient of the B, field

|

Note that 3, has no electric field dependence
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Electric Field contribution

There are two causes of the false EDM effect

/om

& N

e ——_ Motional field due spins moving through electric field
\ /
Bosp £E3 - | (08: ) =
Bt SR
B, = (ExZ)
S -
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Note that B, has linear electric field dependence
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False EDM signal o/ otim

The cross terms of B, linear in E present themselves as a false EDM

T T ey
\ /
s A > =218 l (')B: =
Fo? > r“ﬁ(():)'
" - o o/
BlT Bl- — 'B‘r +B)
— = B3
—_— B\ = E X _—2
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Frequency Shift and nELC

In nEDM experiments, the false EDM was
first encountered by ILL in the early 2000’s

Pendlebury et al. (2004) gives a
thorough description of how the —
frequency shift would be interpreted as a

false EDM and gave a thorough analysis o
of the magnitude of such shifts for
various cases —.. ———

Golub and Lamoreaux (2005) added to this analysis in nEDM
experiments with their solution using density matrices

However, nearly all derivations of the frequency shift have been

done via quantum mechanics
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Classically deriving frequency shift «%

Our starting point,

The Bloch Equation: 4/ _ _ 5. 7

dt
Or, in terms of w: & = —+B
dJ -
T T 5 63
dt
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(icf =) =
= X @
dt
i)
dt Wy e = wady J., = cosf

d.J .
—df = wzy —wyJ, + Jz = sinf cos ¢

d.Jy
dt

B Jy = sinf sin ¢
— w:re]z - wze]x

d : .
= (cos ) = wysinf cos ¢ — wy sinf sin ¢
¢

I S
—(sinf cos @) = w, sinf sin ¢ — wy cos
- ) y
' S ;
= (sinfsin ) = wy cosh — w, sin b cos ¢
dt
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Skipping some algebra...

/om

& N

—0 = Wy, COS O — Wy SIN O tan @ (gb - wz) = Wy Sin @ + wy COS ¢

Then changing our
definition of theta:

¢+ w; = (wy sin ¢ + w, cos ¢) tan 6
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sin@,t
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Then, redefining o = ¢ + w,t

9 = Wy €os(p — wyt) — wg sin(p — w,t)

and assuming small angle
approximation for theta tan() ~ 6.

sin,t

@ = (wy sin(p — w,t) + wy cos(p — w,t))o

sinm ¢t
o

*Reminder, theta in reality is
much smaller than in image
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/om

& N

Now we integrate to get a solution for #, and plug that in to determine
the rate of change of ¥

t
o(t) = / d#' (1!, cos(wot') + w!, sin(wot'))
0

t
o(t) = / dr [—wy sin(wot) + ws cos(wot)] [w), cos(wo(t — 7)) + w], sin(wo(t — 7))]
0
where we have made the substitution t' =t — 7

nEDM Conference February 19, 2021



o/ M

Skipping some more algebra... We arrive at an expression to determine
the instantaneous rate of the phase shift (deviation from the larmor
frequency) as a function of time

cos(woT) [wywz — wWywy]
“dr — sin(woT)[wpws + wywy]

o 2 |+sin(wo[2t — 7])[wiws — wywy]

|+ cos(wo[2t — 7)) [wywe + wiwy] |

p(t) =

Now, in order to determine the frequency shift, we must take the time
and ensemble average of all precessing particles

dw = () = </Ooo %[COS(WOT)(RME(T) — Ry (7)) — sin(woT) (Rez(7) + Ryy(T))]>

where  pii(r) = (wit — rw;(t))
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o/ M

Finally, recall the causes of the frequency shift

we = ax + by, 5

02

w

£

c'

a = b=~

[N

o
o

wy = ay + bug

Keeping the linear-in-E cross terms and noting that the sin term averages
to 0

[ o0
dw = %(/ (lT[(:os(w()T)(Gy,/,y(T) — Guyy(T) + Gzv, (T) — Guz(7))])
0

where Gy (1) = (f(t — 7)g(t))

Determining these correlation functions experimentally will be our next
step
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Connection to Berry’'s Phase o/ nttim

Quantum difference in phase of the two spin-'% eigenstates
phase:

Classical azimuthal angle of the spin vector’s expectation
phase: value

t
Recall O = /0 dT [—wy sin(wot) + wz cos(wot)] [w:j cos(wo(t — 7)) + wl, sin(wo(t — 7'))]

Assuming now a rotating external field w: = acos(w,t) and w, = —asin(w,t)
Our ¢ integral is transformed
‘ t
i o’ (sin wyt sin wot + cos wyt cos wot) / dt' (— sin wyt’ coswot’ + cos wyt’ sinwyt’)

0
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. I (:()n;((wl ) LL’“) ")
: 0 T
— X 0S8 Wr )L
90 Y (()5((&)() u‘7)])[ wo — Wy .

2 (p) =
= [cos((wo — wr)t) — 5 cos(2t(wo — wr)) — 3]

wp — Wy

2

2 Wy — Wy

This is the known Bloch-Siegert shift. Then, subtracting precession in
the opposite direction (w, — —w;)

. Tl i 1
PB = - -
PE=1 wo +wr  Wo — Wy

1 , wr
= ——"— -
2 wi—w?
L .2
So that the phase accumulated over one rotation is ¢z = @Bw—”
o ‘71'(.).‘2
wi — w2

i
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Berry’'s phase

In the adiabatic limit (w_—0), this becomes

which mirrors Berry’s conclusion

While geometric phase had been a topic of discussion since the 1950’s,
Berry was the one to generalize it in his 1984 paper

He noted that, if an eigenstate adiabatically traverses a parameter
space and forms a closed loop, the geometric phase will be
equivalent to the solid angle enclosed by said loop

exp{iy,(C)} = exp{—inQ(C)},
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Conclusion /n\Eﬁ

« A phase shift that is linear in E (due to radial field gradients and
motional magnetic fields) can present itself as a false EDM. At the
sensitivities at which the nEDM@SNS experiment hopes to reach,
this is a significant systematic effect

« Here, we've derived a way to obtain this frequency shift using
classical methods beginning with the classical Bloch equations and
leading to the Fourier transform of the position-velocity correlation
function

« We've also shown that in the adiabatic limit this leads to Berry’s
phase
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Skipped algebra s’ nEDM

—sin 6 = w, sinf cos ¢ — wy sinfsin ¢

d ; : 5 g .

—(cos ) = wysinf cos ¢ — w, sinfsin ¢ —0 = w, coS ¢ — wy sin ¢

dt Wy LR Tt

0800 008 & -— sin B ain dd-= w: ain 0 8ind — w.: COs
g, | . o y COS 00 cos ¢ — sin 0 sin ¢ = w, sin @ sin ¢ — wy, cos ¢
—(sinf cos ¢) = w, sinfsin ¢ — wy cos
dt ‘ ) )
tan @ sin ¢ ((o + wz) = wy + Ocos ¢

d P 0S (0 sin ¢ + sin 0 cos pd = w, cos @ — w, sin b cos ¢

= (sinfsin¢) = wy cos — w, sinf cos ¢
dt

tan @ cos ¢ ((b - wz) = Wy — Osin ¢
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Second skipped algebra /?Eﬁ

[ Wl sin(wo(t — 7))ws cos(wot) ]|
o th —w,, cos(wo(t — T))wy sin(wot)
v o |Fwycos(wo(t — 7))ws cos(wot)

| —w, sin(wp(t — 7))wy sin(wot) |

-

whwy[sin(wo[2t — 7]) — sin(wT)] |

- ! (1_7' ywy[Slll(w()[Qf — T]) -} 5111((,.,07')]
¥ 0 2 [Fwywzlcos(wo[2t — T]) + cos(woT)]
| tw; .wy[( os(wo[2t — 7]) — cos(woT)]]

cos(woT) [w:jw_p — whwy]
/t‘ dr — sin(wy7) [wiw, + w,!’lw.y]

o 2 |+ sin(w() [2t — T])[w;wr o w;;wy]
|+ cos(wo[2t — 7]) [wywz + whwy]]
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Third skipped algebra /n\Eﬁ

1 — cos((wg — wy)t)

Wy — Wy

]

Q= o’ (:os((w() = w,‘)t)[

9
a“
— [(:os((w() — wy )t) — %(:()S(Qt(w() —wy)) —

wp — Wy

(S

]

Cosine terms vanish after taking time average
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Connection to Berry’s phase o/ nttim

"In fact, in a classical system does not have a phase but we can
understand how the effect is manifested in a classical system by
noting that in a spin 1/2 system the difference in phase between
the two eigenstate vectors corresponds to the azimuthal angle of
the expectation value of the spin vector. Thus, Berry's phase (of
opposite signs for the two eigenstates) can be expected to appear
as a precession of the classical angular momentum in a system
exposed to adiabatic cycling of the magnetic field."
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Math, connections to Berry's phase o/ nttim

Adiabatically traversing parameter space in a closed loop

Give final results here, the “familiar” solid angle with (hopefully) a
figure. Could we relate it to Pendlebury with the correct relations

for a and b to alpha? alpha is constant, assumes circular motion

b/c same amplitude for x and y

Berry’s phase is adiabatic limit of Bloch-Siegert shift
Note to self: Look at pg 22 of JINST
JINST basicallytakes . 1 «* andsaysa=vya*yb

, AR
2wy — wr
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Useful (?) figures/equations to

/ Em

. wr = acos(wrt) and wy = —asin(w,t)) 8 N
put In
. S . [ " b = {:
wy = ax + by,

wy =ay+bv, o=3%"
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