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What is the false EDM?

Spin relaxation theory tells us that a fluctuating transverse 
magnetic field produces shifts in neutron and Hg precession 

frequencies

𝛿𝜔 =
𝛾2

2
න
0

∞

𝑑𝜏 Im 𝑒𝑖𝜔𝜏 𝑏∗ 0 𝑏(𝜏)

Main contribution to false EDM

𝑏(𝜏) = 𝐁𝑇 𝐫(𝜏) +
𝐄

𝑐2
× ሶ𝐫(𝜏) ⋅ 𝐞𝐱 + 𝑖𝐞𝐲

Frequency shifts odd in E (opposite E and B 
configurations) produce a false EDM 

𝑑false =
ℏ

4 𝐸
𝛿𝜔(−𝐸) − 𝛿𝜔(𝐸))

non-uniform + motional

𝑑𝑛
false

𝑑
𝑛←Hg
false =

𝛾𝑛
𝛾Hg

𝑑Hg
false

𝒓(𝜏)Hg

𝒆𝑥

𝒆𝐳

𝒆𝑦
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To sum up, the false EDM is produced by the correlation between the 
motional and the non-uniform transverse fluctuating fields : 

𝑑
𝑛←Hg
false =

ℏ 𝛾𝑛𝛾Hg

2𝑐2
න
0

∞

𝑑𝜏 cos 𝜔𝜏
𝑑

𝑑𝜏
𝑥 𝜏 𝐵𝑥 0 + 𝑦 𝜏 𝐵𝑦 0

• Can be numerically calculated 
(TOMAt monte-carlo simulation)

𝐶 𝜏

False EDM produced by a linear gradient 
𝐺1 as a function of holding field 𝐵0

1. 𝑑
𝑛←Hg
false 𝐵0 increases with chamber size → concerning for n2EDM

2. 𝑑
𝑛←Hg
false (𝐵0) has a zero crossing ! We call this the magic value 𝐵0𝑚
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Motivations for the magic field option

What we’re doing right now: 

𝐵0 = 1𝜇T→ low frequency regime approximation 
𝜔𝜏𝑐 = 𝛾Hg𝐵0𝜏𝑐 ≪ 1:

𝑑
𝑛←Hg
false = −

ℏ 𝛾𝑛𝛾Hg

2𝑐2
𝑥𝐵𝑥 + 𝑦𝐵𝑦

False EDM can be split into 2 contributions:

• top-bottom gradient 

𝐺TB =
𝐵𝑧 𝑇𝑂𝑃 − 𝐵𝑧 𝐵𝑂𝑇

𝐻′

• odd phantom modes (some linear 
combinations of 𝒍-odd, 𝒎 = 𝟎 modes 
that do not produce top-bottom gradient)

plug in polynomial expansion of B

𝐁 𝐫 = 𝐵0 𝐞𝐳 +

𝑙=1

+∞



𝑚=−𝑙

𝑙

𝐺𝑙𝑚𝚷𝐥𝐦 𝐫

where only 𝒍-odd, 𝒎 = 𝟎 terms generate a false EDM 
(cylindrical symmetries)

Example: With some field configuration 

𝐁 = 𝐵0𝐞𝐳 + 𝐺TB𝚷𝟏𝟎 + ሖ𝐺3 ሖ𝚷𝟑 + ሖ𝐺5 ሖ𝚷5 +⋯

𝑑
𝑛←Hg
false =

ℏ 𝛾𝑛𝛾Hg

8𝑐2
𝑅2 𝐺TB + ሖ𝐺3 + ሖ𝐺5 +⋯

𝐵𝑧

TOP

BOT
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𝐺TB ሖΠ𝟑 ሖΠ2𝒏+1 , 𝒏 > 𝟏

Expression 𝐺10 − 𝐿3
2𝐺30 + 𝐿5

4𝐺50 − …
𝑐3 𝚷10 +

1

𝐿3
2 𝚷30 𝑐2𝑛+1 𝚷10 −

−1 𝑛

𝐿2𝑛+1
2𝑛 𝚷2𝑛+1,0

Gradients 𝐺TB ሖ𝐺𝟑 ሖG2𝒏+1 , 𝒏 > 𝟏

Measurement 
method

Hg co-magnetometers 
(online)

Cs magnetometers 
(online)

Mapper (offline)

Requirement type Accuracy Accuracy Accuracy + reproducibility

Requirement 
magnitude at 1𝜇T

𝛿𝐵Hg < 100 fT 𝛿 ሖ𝐺3 < 20 fT/cm 𝛿 ሖ𝐺5 < 20 fT/cm

1. Introduction
ii. Motivations for the 

magic field option

Currently we operate at 𝐵0= 1𝜇T→ strict requirements on measurement accuracy and reproducibility of ሖΠ2𝒏+1

Another option, the magic field option, is to increase 𝐵0 to a value that cancels or diminishes the false EDM 
produced by specific phantom modes

We saw earlier that there existed 𝐵0𝑚 such that 𝑑
𝑛←Hg
false 𝐵0𝑚 = 0 for a linear gradient, let’s now look at it in more 

detail and tackle the general case
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Magic field : general approach
2. The magic field option

i. General approach

𝐵0 goes to values that do not allow the low frequency approximation

→ compute general expression of 𝐶 𝜏 numerically (TOMAt) for several 𝑩𝟎 + ሖ𝚷𝟐𝐧+𝟏 configurations.

• 𝐶 𝜏 written using symmetries of 𝑩 and properties of correlation functions as a linear combination of

correlation functions 𝐶𝑖𝑗 𝜏 involving trajectories 𝑥(𝑡) and 𝑦 𝑡 :

𝐶 𝜏 = 𝑐2𝑛+1 𝐺10 𝑥 𝜏 𝑥 0 − 𝐺2𝑛+1
−1 𝑛

𝐿2𝑛+1
2𝑛 

𝑖,𝑗,𝑘

𝛼𝑖𝑗2𝑘
𝐻2𝑘

2𝑘 + 1 22𝑘
𝑥 𝜏 𝑥𝑖 0 𝑦𝑗 0

• Correlation terms 𝐶𝑖𝑗 𝜏 calculated with TOMAt and fitted

• 𝑑
𝑛←Hg
false (𝜔) derived analytically with fitted expressions of 𝐶 𝜏

→ 𝐵0𝑚 for each 𝑩𝟎 + phantom mode configuration

𝑖 + 𝑗 + 2𝑘 = 2𝒏 + 1

Phantom 
mode order
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How does TOMAt calculate correlation 
functions ?

𝒓(𝑡 + 𝜏)𝒓(𝑡)

𝒆𝑥

𝒆𝐳

𝒆𝑦

1. Simulates trajectories 𝒓 𝑡 = (𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡 )

• Set of collision points (assume collisions only with 
walls) ⇒ constant velocities between two points

• Velocities are Maxwell-Boltzman distributed 
(diffuse reflection)

2. Calculates 𝑥 𝜏 𝑥𝑖 0 𝑦𝑗 0

• Uses ergodicity hypothesis: average over all 
particles ⇔ time average of one particle over 

infinite time: lim
𝑇→∞

1

𝑇
0
∞
𝑑t 𝑥(𝑡)𝑥 𝑡 + 𝜏

Correlation between positions 𝑥(0) and 𝑥(𝜏) of one Hg 
molecule as a function of 𝜏

n2EDM dimensions:
Chamber radius 𝑅 = 40 𝑐𝑚
Chamber height 𝐻 = 12 𝑐𝑚
Chambers distance 𝐻′= 18𝑐𝑚
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Correlation function fit

We know we can fit correlation functions with a double 
exponential model

𝐶𝑖𝑗 𝜏 = 𝐴𝑖𝑗𝑒
−𝑎𝑖𝑗𝜏 − 𝐵𝑖𝑗𝑒

−𝑏𝑖𝑗𝜏

Physical intuition :

• Correlation between two positions of one particle at 
time difference 𝜏 goes to 0 as 𝜏 → ∞

• No correlation between velocity and position at 
identical time ⇒ null slope at 𝜏 = 0

Example: 𝐶10 𝜏 = 𝑥 𝜏 𝑥 0

𝐶10 0 =
𝑅2

4
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Results and magic values

Analytical expression derived with fitted 
correlation functions:

𝑑
𝑛←Hg
false(𝑛) 𝜔

=
ℏ 𝛾𝑛𝛾Hg

2𝑐2
𝑐2𝑛+1 



𝐺10 𝐴10
𝑎10
2

𝑎10
2 + 𝜔2

− 𝐵10
𝑏10
2

𝑏10
2 + 𝜔2

− 𝐺2𝑛+1
−1 𝑛

𝐿2𝑛+1
2𝑛 

𝑖,𝑗,2𝑙

𝛼𝑖𝑗2𝑙
𝐻2𝑙

2𝑙 + 1 22𝑙+1
𝐴𝑖𝑗

𝑎𝑖𝑗
2

𝑎𝑖𝑗
2 + 𝜔2

− 𝐵𝑖𝑗
𝑏𝑖𝑗
2

𝑏𝑖𝑗
2 + 𝜔2

𝑑
𝑛←Hg
false(𝑛) 𝜔 = 𝜇Hg𝐵0 for 4 field configurations: 

𝐵0𝐞𝐳 + ሖ𝐺2𝑛+1 ሖ𝚷2𝑛+1 𝑛 = 0,1,2,3
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𝐵0𝑚,3 = 9.6𝜇T 𝐵0𝑚,5 = 10.5𝜇T 𝐵0𝑚,1 = 11.3𝜇T 𝐵0𝑚,7 = 11.6𝜇T

Best magic value for a combination of those 
phantom modes ?

One possibility is to set it to 𝐵0𝑚,5

➢ Cancels 5th order mode
➢ Suppresses 3rd order mode by a 

factor 30
➢ Suppresses the 7th order mode by a 

factor 40



Conclusion
3. Conclusion

The increased sensitivity of the n2EDM apparatus comes at the price of an
intensified false EDM. By increasing the holding field value to the magic value of
one of the less controlled phantom modes, the magic field option will allow us to do
a measurement with very limited systematics.

On the other hand a higher 𝐵0 is not as easily kept uniform and stable. With 𝐵0𝑚 ∼
10𝜇T , this difficulty increases by an order of magnitude.
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Details on TOMAt

Two modules:

1. Simulates trajectories 𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡

2. Calculates correlation functions 𝐹 0 𝐺 𝜏

• Sequence of collision points 𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡

• Assumes constant velocity between two points
• Reflection is either specular (normal velocity changes direction)

or diffuse (new velocities are Maxwell-Boltzman distributed)

• Assume 𝐹 𝑡 = 𝑥𝑎(𝑡)𝑦𝑏(𝑡)𝑧𝑐(𝑡) and G 𝑡 = 𝑥𝑖(𝑡)𝑦𝑗(𝑡)𝑧𝑘(𝑡)

• Use ergodicity: 𝐹 0 𝐺 𝜏 = 𝑙𝑖𝑚𝑇→+∞
1

𝑇
0
𝑇
𝑑𝑡 𝐹 𝑡 𝐺 𝑡 + 𝜏

• Split 0, T into intervals Δ𝑇𝑛 = 𝑇𝑛+1 − 𝑇𝑛 such that 𝑥 𝑡 , 𝑦 𝑡 , 𝑧 𝑡 and 
𝑥 𝑡 + 𝜏 , 𝑦 𝑡 + 𝜏 , 𝑧 𝑡 + 𝜏 are linear functions of 𝑡 for 𝑇𝑛 < 𝑡 < 𝑇𝑛+1:

𝐹 0 𝐺 𝜏 =
1

𝑇


𝑛

Δ𝑇𝑛𝐼𝑛

• Calculate the integral 𝐼𝑛 on Δ𝑇𝑛 recursively
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Details on fit

Correlation functions satisfy:

• 𝐶𝑖𝑗 0 = 𝑥𝑖+1𝑦𝑗

• lim
𝜏→+∞

𝐶 𝜏 = 0

•
𝑑𝐶 𝜏

𝑑𝜏
ȁ𝜏=0 = 0

⇒ double exponential fit of correlation terms

𝐶𝑖𝑗 𝜏 = 𝐴𝑖𝑗𝑒
−𝑎𝑖𝑗𝜏 − 𝐵𝑖𝑗𝑒

−𝑏𝑖𝑗𝜏

with constrained parameters

• 𝐴𝑖𝑗 =
𝑏𝑖𝑗𝐶𝑖𝑗(0)

𝑏𝑖𝑗−𝑎𝑖𝑗

• 𝐵𝑖𝑗 =
𝑎𝑖𝑗𝐶𝑖𝑗(0)

𝑏𝑖𝑗−𝑎𝑖𝑗

Example 

𝐶10 𝜏 = 𝑥 𝜏 𝑥 0

𝐶10 0 =
𝑅2
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𝑎, 𝑏, 𝐴, 𝐵 > 0


