

Magic field option to cancel the false EDM

February 19, 2021 **nEDM2021**

Thomas Bouillaud

Outline

1. Background on false EDM and motivation

- i. What is the false EDM? False Hg nEDM
- ii. Motivations for the magic field option

2. The magic field option in specifics

- i. General approach
- ii. TOMAt: numerical calculation of correlation functions
- iii. Fitting of correlation functions
- iv. Results and magic field values
- 3. Conclusion

- 1. Introduction
 - i. What is the false EDM?

What is the false EDM?

Spin relaxation theory tells us that a fluctuating transverse magnetic field produces shifts in neutron and Hg precession frequencies

$$\delta\omega = \frac{\gamma^2}{2} \int_0^\infty d\tau \, \mathrm{Im} \big[e^{i\omega\tau} \langle b^*(0)b(\tau) \rangle \big]$$

$$b(\tau) = \left[\mathbf{B}_T(\mathbf{r}(\tau)) + \frac{\mathbf{E}}{c^2} \times \dot{\mathbf{r}}(\tau)\right] \cdot \left[\mathbf{e}_{\mathbf{x}} + i\mathbf{e}_{\mathbf{y}}\right]$$

non-uniform + motional

Main contribution to false EDM

- 1. Introduction
 - i. What is the false EDM?

To sum up, the false EDM is produced by the correlation between the motional and the non-uniform transverse fluctuating fields :

$$d_{n \leftarrow \text{Hg}}^{\text{false}} = \frac{\hbar \left| \gamma_n \gamma_{\text{Hg}} \right|}{2c^2} \int_0^\infty d\tau \cos(\omega \tau) \frac{d}{d\tau} \langle x(\tau) B_x(0) + y(\tau) B_y(0) \rangle$$

• Can be numerically calculated (TOMAt monte-carlo simulation)

 $C(\tau)$

 G_1 as a function of holding field B_0

1. $d_{n \leftarrow \text{Hg}}^{\text{false}}(B_0)$ increases with chamber size \rightarrow concerning for n2EDM 2. $d_{n \leftarrow \text{Hg}}^{\text{false}}(B_0)$ has a zero crossing ! We call this the magic value B_{0m}

4

- **1.** Introduction
 - ii. Motivations for the magic field option

Motivations for the magic field option

False EDM can be split into 2 contributions:

• top-bottom gradient

$$G_{\rm TB} = \frac{\langle B_z \rangle_{TOP} - \langle B_z \rangle_{BOT}}{H'}$$

• odd phantom modes (some linear combinations of l-odd, m = 0 modes that do not produce top-bottom gradient)

Example: With some field configuration $\mathbf{B} = B_0 \mathbf{e_z} + G_{\text{TB}} \mathbf{\Pi_{10}} + \mathbf{\acute{G}_3} \mathbf{\acute{\Pi}_3} + \mathbf{\acute{G}_5} \mathbf{\acute{\Pi}_5} + \cdots$

$$d_{n\leftarrow \text{Hg}}^{\text{false}} = \frac{\hbar \left| \gamma_n \gamma_{\text{Hg}} \right|}{8c^2} R^2 \left(\frac{G_{\text{TB}}}{6} + \frac{G_3}{6} + \frac{G_5}{6} + \cdots \right)$$

1. Introduction

ii. Motivations for the

magic field option		G_{TB}	́П ₃	${ m \acute{\Pi}}_{2n+1}$, $n>1$
	Expression	$G_{10} - L_3^2 G_{30} + L_5^4 G_{50} - \dots$	$c_3\left(\Pi_{10} + \frac{1}{L_3^2}\Pi_{30}\right)$	$c_{2n+1}\left(\Pi_{10} - \frac{(-1)^n}{L_{2n+1}^{2n}}\Pi_{2n+1,0}\right)$
	Gradients	G_{TB}	Ġ ₃	${\operatorname{\hat{G}}}_{2n+1}$, $n>1$
	Measurement method	Hg co-magnetometers (online)	Cs magnetometers (online)	Mapper (offline)
	Requirement type	Accuracy	Accuracy	Accuracy + reproducibility
	Requirement magnitude at $1\mu T$	$\delta B_{\rm Hg} < 100 \ {\rm fT}$	$\delta G_3 < 20 \text{ fT/cm}$	$\delta \acute{G}_5 < 20 ~{ m fT/cm}$

Currently we operate at $B_0 = 1 \mu T \rightarrow$ strict requirements on measurement accuracy and reproducibility of $\hat{\Pi}_{2n+1}$

Another option, the magic field option, is to increase B_0 to a value that cancels or diminishes the false EDM produced by specific phantom modes

We saw earlier that there existed B_{0m} such that $d_{n \leftarrow Hg}^{\text{false}}(B_{0m}) = 0$ for a linear gradient, let's now look at it in more detail and tackle the general case

2. The magic field option

İ.

General approach

Magic field : general approach

 B_0 goes to values that do not allow the low frequency approximation

- → compute general expression of $C(\tau)$ numerically (TOMAt) for several $B_0 + \Pi_{2n+1}$ configurations.
- $C(\tau)$ written using symmetries of **B** and properties of correlation functions as a linear combination of correlation functions $C_{ij}(\tau)$ involving trajectories x(t) and y(t):

$$C(\tau) = c_{2n+1} \left[G_{10}(x(\tau)x(0)) - G_{2n+1} \frac{(-1)^n}{L_{2n+1}^{2n}} \sum_{i,j,k} \alpha_{ij2k} \frac{H^{2k}}{(2k+1)2^{2k}} \langle x(\tau)x^i(0)y^j(0) \rangle \right]$$
Phantom mode order
$$i + i + 2k = 2n + 1$$

- Correlation terms $C_{ij}(\tau)$ calculated with TOMAt and fitted
- $d_{n \leftarrow \text{Hg}}^{\text{false}}(\omega)$ derived analytically with fitted expressions of $C(\tau)$

 $\rightarrow B_{0m}$ for each B_0 + phantom mode configuration

2. The magic field option

ii. Calculation of $C(\tau)$

How does TOMAt calculate correlation functions ?

- 1. Simulates trajectories r(t) = (x(t), y(t), z(t))
 - Set of collision points (assume collisions only with walls) ⇒ constant velocities between two points
 - Velocities are Maxwell-Boltzman distributed (diffuse reflection)
- 2. Calculates $\langle x(\tau)x^i(0)y^j(0)\rangle$
 - Uses **ergodicity hypothesis**: average over all particles \Leftrightarrow time average of one particle over infinite time: $\lim_{T \to \infty} \frac{1}{T} \int_0^\infty dt \, x(t) x(t + \tau)$

Correlation between positions x(0) and $x(\tau)$ of one Hg molecule as a function of τ

2. The magic field option iii. Fitting $C(\tau)$

Correlation function fit

We know we can fit correlation functions with a double exponential model

$$C_{ij}(\tau) = A_{ij}e^{-a_{ij}\tau} - B_{ij}e^{-b_{ij}\tau}$$

Physical intuition :

- Correlation between two positions of one particle at time difference τ goes to 0 as $\tau \to \infty$
- No correlation between velocity and position at identical time \Rightarrow null slope at $\tau = 0$

Example: $C_{10}(\tau) = \langle x(\tau)x(0) \rangle$

2. The magic field option iv. Results

Results and magic values

2. The magic field option iv. Results

Best magic value for a combination of those phantom modes ?

One possibility is to set it to $B_{0m,5}$

- > Cancels 5th order mode
- Suppresses 3rd order mode by a factor 30
- Suppresses the 7th order mode by a factor 40

Conclusion

The increased sensitivity of the n2EDM apparatus comes at the price of an intensified false EDM. By increasing the **holding field value** to the **magic value** of one of the less controlled **phantom modes**, the magic field option will allow us to do a measurement with very limited systematics.

On the other hand a higher B_0 is not as easily kept uniform and stable. With $B_{0m} \sim 10 \mu T$, this difficulty increases by an order of magnitude.

Details on TOMAt

Two modules:

- 1. Simulates trajectories (x(t), y(t), z(t))
- 2. Calculates correlation functions $\langle F(0)G(\tau) \rangle$

- Sequence of collision points (x(t), y(t), z(t))
- Assumes constant velocity between two points
- Reflection is either *specular* (normal velocity changes direction) or *diffuse* (new velocities are Maxwell-Boltzman distributed)

• Assume $F(t) = x^{a}(t)y^{b}(t)z^{c}(t)$ and $G(t) = x^{i}(t)y^{j}(t)z^{k}(t)$

- Use ergodicity: $\langle F(0)G(\tau)\rangle = \lim_{T \to +\infty} \frac{1}{T} \int_0^T dt \ F(t)G(t+\tau)$
- Split [0, T] into intervals $\Delta T_n = T_{n+1} T_n$ such that x(t), y(t), z(t) and $x(t+\tau), y(t+\tau), z(t+\tau)$ are linear functions of t for $T_n < t < T_{n+1}$: $\langle F(0)G(\tau) \rangle = \frac{1}{T} \sum_n \Delta T_n I_n$
- Calculate the integral I_n on ΔT_n recursively

2. The magic field option iii. Fitting $C(\tau)$

Details on fit

Correlation functions satisfy:

- $C_{ij}(0) = \left\langle x^{i+1} y^j \right\rangle$
- $\lim_{\tau \to +\infty} C(\tau) = 0$
- $\frac{dC(\tau)}{d\tau}|_{\tau=0}=0$
- \Rightarrow double exponential fit of correlation terms

$$C_{ij}(\tau) = A_{ij}e^{-a_{ij}\tau} - B_{ij}e^{-b_{ij}\tau}$$

with constrained parameters

•
$$A_{ij} = \frac{b_{ij}C_{ij}(0)}{b_{ij}-a_{ij}}$$

•
$$B_{ij} = \frac{a_{ij}C_{ij}(0)}{b_{ij}-a_{ij}}$$

