% TRIUMF

Optimizing the performance of a spallation-driven ultracoldneutron source with deuterium and superfluidhelium moderators

Wolfgang Schreyer TUCAN collaboration

Discove

TUCAN timeline

- 2013 2016: Installation of new beamline and neutron spallation target <u>S. Ahmed et al, A beamline for fundamental neutron physics at TRIUMF, NIM A 927 (2019), 101-108</u> <u>S. Ahmed et al, Fast-switching magnet serving a spallation-driven ultracold neutron source, Phys. Rev. Accel. Beams 22 (2019), 102401</u>
- 2017 2019: Operation of prototype UCN source S. Ahmed et al, First ultracold neutrons produced at TRIUMF, Phys. Rev. C 99 (2019), 025503
- 2020 2022: Installation of upgraded TUCAN source
- 2022: Installation of TUCAN EDM experiment with sensitivity goal 10⁻²⁷ ecm

Neutron spallation target

- 19 kW beam power
- Intensity & time structure adjustable with kicker magnet

Concept of new TUCAN source

4

Optimization goal

• Maximize UCN density in experiment $\rho = \frac{P\tau}{v}$

• Production rate P and heat load Q from MCNP $P = \int \phi_n(E)\sigma(E)dE$

• Volume
$$V = V_{source} + V_{guides} + V_{exp}$$

• Storage lifetime $\tau^{-1} = \tau_{He}^{-1} + \tau_{abs}^{-1} + \tau_{wall}^{-1} + \tau_{\beta}^{-1}$ • $\tau_{He}^{-1} \approx B\left(\frac{T}{1K}\right)^7 \approx \frac{1}{b}\left(\frac{Q}{1W}\right)^a$

5

Initial MCNP simulation model

Side view

Top view

Adding UCN guides

Vertical extraction

Horizontal extraction

Optimization

- Multi-dimensional optimization with 8 parameters
- Allows fair comparison of different moderators:

Table 4: Effect of different cold moderators on the production-toheat ratio in individually optimized geometries.

Moderator	Average layer thickness (cm)	Volume (L)	Effect on P/Q (%)
Ortho-LD ₂ Ortho-LD ₂	$\begin{array}{c} 12.5 \\ 19.4 \end{array}$	$\frac{125}{200}$	+160 +230
Solid D_2O	11.6 2.6	95 23	(baseline)
1 ala-L112	5.0	00	-10

Engineering challenges

- Minimize wall thicknesses
- Explosive D₂:
 - Limited quantity (<150 L liquid)
 - Explosion-proof pressure vessels (Al2219 alloy with high post-weld strength, domes machined out of large billets)
- Large radiation fields (10 kSv/h), minimize shielding penetration

Minimize gaps between moderators

He-II vessel	Thickness (mm)	Effect on P/Q (%)
Aluminium	2	(baseline)
Al6061	2	-5
AlBeCast 910	3	+5
AlBeMet 162	2	+50
AZ80	2.5	+40
BerAlCast 310	1.5	-5
Beryllium	1.5	+90
Magnox AL80	4	+15

Production rate: 1.4 to 1.6×10⁷ UCN/s

			Heat]	load (W)
		Volume (L)	max.	average
Heat loads:	UCN converter	27	8.1	2.8
	Liquid deuterium	125	63	21
	Heavy water	630	430	150

- He-II temperature ~1.1 K
- Storage lifetime ~30 s

Neutron flux

UCN production by 60% single-phonon scattering 40% multi-phonon scattering

Moderator vessel assembly

- He-II domes complete
- Preparing for welding, plating, test with UCN
- Outer vessels to be completed by June

Outlook

- Dec. 2020: He-II vessel machined
- Mar. 2021: D₂O vessel & graphite/B₄C carrier complete
- Apr. 2021 (end of 2021 shutdown): shielding reconfigured
- June 2021: moderator vessels machined
- June 2021: test of He-II vessel with UCN
- July 2021: welding of nested moderator vessels
- Jan. 2022: installation of completed moderator vessels
- Apr. 2022 (end of 2022 shutdown): shielding completed

∂TRIUMF

Key parameters

- 1.4 1.6×10⁷ UCN/s
- 8.1 W heat load on He-II
- ~1.1 K He-II temperature
- ~30 s storage lifetime
- Projected UCN density in nEDM:
 - 200 400 polarized UCN/cm³ filled
 - 30 60 UCN/cm³ detected
- First UCN production 2022

Thank you

16