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• Lecture 1 (Tuesday 10:30-12:00):  
Philosophy and Landscape of EFTs  


• Lecture 2 (Thursday 10:30-12:00):  
CP-violation in EFT 

2 lectures on EFT, at a fairly elementary level (I hope)

Timetable
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Philosophy of EFT
Lecture 1



Role of scale in physical problems
Some distribution  
of electric charges 

r

Near 
observer

Far 
observer

R

L

Near observer, L~R, needs to know the position of every charge to describe electric field in her proximity  

Far observer, r >> R,  can instead use multipole expansion: V( ⃗r ) =
q
r

+
⃗d ⋅ ⃗r

r3
+

Qijrirj

r5
+ …

~1/r ~R/r^2 ~R^2/r^3

Far observer is able to describe electric field in his vicinity using just a few parameters: 
the total electric charge, eventually the dipole moment, …. 

Higher order terms in the multipole expansion are suppressed by powers of the small parameter (R/r). 
 One can truncate the expansion at some order depending on the value of (R/r) and experimental precision

Far observer, like Molière's Mr. Jourdain,  
discovers that he has been using EFT all his life  



Scale in microscopic problems

X-ray photons see 
the atomic structure 

and scatter on  
the orbiting electrons

=
1

meα

Lower-energy photons 
see atoms as neutral objects 

which are basically transparent

=
10

meα

γ

Visible light photon

(that’s how the universe becomes transparent to photons right after recombination)



Scale in quantum field theory

Consider a theory of a light particle φ  
interacting with a heavy particle H

φ

φ

H

φ

φ

H

φ

φ

x1 x2

At small distance scales, |x1-x2| << 1/mH,  
the heavy particle H propagates.  

Force acting between light particles φ

At large distance scales, |x1-x2| >> 1/mH,  
propagation of the heavy particle H suppressed. 
Interaction looks like a delta function potential 

P(x1, x2) ∼ exp(−mH |x1 − x2 | )

mH ∼ ΔE ≪
1

|x1 − x2 |
∼

1
Δt

⇒ ΔEΔt ≪ 1 mH ∼ ΔE ≫
1

|x1 − x2 |
∼

1
Δt

⇒ ΔEΔt ≫ 1

Heavy particle H propagator in coordinate space:

φ

φ

φ

φ



Scale in quantum field theory
Consider a theory of a light particle φ  

interacting with a heavy particle H

φ

φ

φ

φ

φ

φ

H

φ

φ

At large momentum scales, p2 >> mH2,  
we see propagation of the heavy particle H. 

Force acting between light particles φ

P(p2) ∼
1

p2 − m2
H

=

1
p2

p2 ≫ m2
H

−
1

m2
H

p2 ≪ m2
H

Heavy particle H propagator in momentum space:

ℳ ∼
g2

p2 ℳ ∼
g2

m2
H

At small momentum scales, p2 << mH2,  
propagation of the heavy particle H 

effectively leads to a contact interaction 
between light particles φ 



Scale in particle theory
φ

φ

H

φ

φ

φ

φ

φ

φ

• Processes probing  distance scales >> 1/mH, equivalently  energies scales << mH, 
cannot  resolve the propagation of H


• Then, intuitively, exchange of heavy particle H between light particles φ should be 
indistinguishable from a contact interaction of φ  


• In other words, the effective theory describing  φ interactions should be well 
approximated by a local Lagrangian, that is, by a polynomial in φ and its derivatives 

This is the generic way how the effective theory description arise in particle physics,  
which will be repeated in all the examples that follow 



Effective field  theory

How to build an EFT

Bottom up Top down

Starting with a set of particles 
we build the Lagrangian  

describing all their possible interactions 
obeying a prescribed set of symmetries 
and organised in a consistent expansion 

Starting with a given theory  
(effective or fundamental) 

we integrate out degrees of freedom 
heavier than some prescribed mass scale 



Intermezzo: Dimensional analysis

• Effective Lagrangians by construction must contain infinite number of 
terms. Therefore any useful EFT comes with a set of power counting 
rules which allow one to organize the Lagrangian in a consistent 
expansion and single out the most relevant terms 


• Relativistic effective theories are obtained by integrating out heavy 
fields H with mass of order Λ, and the inverse of the latter provides a 
natural expansion parameter to organize the effective Lagrangian. 


• The effective Lagrangian is then organized according to canonical 
dimensions of its interactions terms, where the powers of the mass scale 
multiplying each term are identified with Λ. The observables computed 
fare then expanded  in  E/Λ where E is the typical energy scale of the 
experiment   


• Warning: different power counting rules may apply to non-relativistic 
theories, or relativistic systems with one heavy component (such as e.g. 
B-mesons), or to theories with non-linearly realized symmetry. These 
cases will be discussed later.  



To isolate UV and IR limits, 
consider rescaling of 
spacetime coordinates

ξ→0 is zooming in on small distances (UV limit)

ξ→∞ is zooming in on large distances (IR limit)

Since path integral is dominated by kinetic terms

to easily compare the original and rescaled actions 


it is convenient normalize the kinetic terms canonically 

Dimensional analysis



Mass term is relevant operator: it gets more important in IR

Quartic coupling is marginal operator: it is (approximately) the same

in UV and in IR

Higher dimensional interactions (for d+n>4) are irrelevant operators: they get 
less important in IR

Power counting in relativistic EFT, determining the importance of various 
interactions, can be organized based on canonical dimension of interactions 

Dimensional analysis



Relativistic field theory

Dimensional analysis cheat sheet



Euler-Heisenberg EFT

• Quantum Mechanics + Poincaré invariance  = relativistic Quantum Field Theory 

• Degrees of freedom: a massless spin-1 photon with 2 polarizations 
 (neutrinos are ignored in this discussion) 

• U(1) gauge invariance 

• Validity regime up for photon energies smaller than the cutoff scale  Λ  

• No other mass scale in the EFT except for Λ 

Rules of the game

Starting from these principles, we will build an EFT for the photon  in systematic expansion in 1/Λ

ℒeff = ℒD=4 +
1
Λ

ℒD=5 +
1

Λ2
ℒD=6 +

1
Λ3

ℒD=7 +
1

Λ4
ℒD=8 + …

E.g. 2-to-2 photon scattering amplitude calculated from this Lagrangian must have form 

ℳ(γγ → γγ) = a0 + a1
Eγ

Λ
+ a2

E2
γ

Λ2
+ a3

E3
γ

Λ3
+ a4

E4
γ

Λ4
+ …

For Eγ << Λ each consecutive term is more suppressed, therefore the expansion makes sense 
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Illustration #1

Euler-Heisenberg EFT

We will start with a bottom up approach, and then connect it to the top down approach



Euler-Heisenberg EFT
Consider effective theory for photons propagating in vacuum with Eγ << 2me ≈ 1 MeV

• At these energies all charged particles are integrated out, hence the effective 
Lagrangian must be a function of only the photon field Aµ 

• Photons are massless, so the only explicit mass scale in this construction is the EFT 
cutoff scale  Λ  

• Gauge and Lorentz invariance requires the effective Lagrangian to be a function of 
the field strength Fµν and its derivatives 

ℒeff = ℒ(Fμν, F̃μν, ∂μ, Λ)
Fμν = ∂μAν − ∂νAμ

F̃μν =
1
2

ϵμναβFαβ

We will build the effective Lagrangian as an expansion in 1/Λ 

ℒeff = Λ2ℒD=2 + ℒD=4 +
1

Λ2
ℒD=6 +

1
Λ4

ℒD=8 + …

Here D denotes the canonical dimension of each term  
(no odd dimensions because [Fµν]=2, and derivatives must always come in pairs)



Euler-Heisenberg EFT

D=2: Fμμ = F̃μμ = 0 No possible invariants thus

ℒeff = Λ2ℒD=2 + ℒD=4 +
1

Λ2
ℒD=6 +

1
Λ4

ℒD=8 + …

D=4: FμνFμν

ℒD=2 = 0

One invariant

ℒD=4 = −
1
4

FμνFμν the numerical coefficient is pure convention,  
except for the sign, which is required  

to avoid ghost instability

F̃μνF̃μν = FμνFμν

FμνF̃μν

D=6: Again, no non-trivial invariants! Hence ℒD=6 = 0

FμνFνρFρμ = 0 = FμνFνρF̃ρμ = …

is a total derivative

∂μ∂νFμν = 0

ℒD=6 = cFμν □ Fμν can be eliminated by the change of variables Aμ → Aμ +
2c
Λ2

□ Aμ

Fμν∂αFμα∂βFνβ = 0

Non-trivial interactions between photons can arise only at order 1/ Λ4 in the EFT! 



ℒeff = −
1
4

FμνFμν +
1

Λ4
ℒD=8 + …

Euler-Heisenberg EFT

D=8: The most general non-redundant Lagrangian at D=8 is 

ℒD=8 = c1(FμνFμν)2 + c2(FμνF̃μν)2 + c3(FμνFμν)(FαβF̃αβ)

FμαFανFμβFβν =
1
4

(FμνFμν)2 +
1
2

(FμνF̃μν)2

Other possible structures  
can be shown to be redundant,  that is  
they can be eliminated or expressed  

by the three above  

The high-school version of the same Lagrangian:

ℒD=8 = 4c1( ⃗E 2 − ⃗B 2)2 + 16c2( ⃗E ⃗B )2 + 8c3( ⃗E 2 − ⃗B 2)( ⃗E ⃗B )

The Lagrangian’s free parameters are  called  
the Wilson coefficient in this context

e.g.

Lagrangian’s  interactions are called  
operators in this context



Euler-Heisenberg EFT

ℒeff = −
1
4

FμνFμν +
1

Λ4 {c1(FμνFμν)2 + c2(FμνF̃μν)2 + c3(FμνFμν)(FαβF̃αβ)} + …

This Lagrangian describes the effective theory of light at low energies  
(UV, visible, IR, microwaves, radio) at the leading order beyond the Maxwell approximation

γ
γ
γ

γ

In its validity regime, it is also appropriate to describe the entire textbook electrodynamics, 
plus vacuum birefringence,  photon-photon scattering at low energies, and more

This is the effective theory underlying the physics of lightsabers



Euler-Heisenberg EFT
ℒeff = −

1
4

FμνFμν +
1

Λ4 {c1(FμνFμν)2 + c2(FμνF̃μν)2 + c3(FμνFμν)(FαβF̃αβ)} + …

This Lagrangian defines a completely healthy and consistent quantum field theory 
with quartic (and possibly higher-point) self-interactions between photons.

Scattering amplitudes can be calculated in a systematic expansion in 1/ Λ4   .  E.g.

ℳ(γ+γ+γ+γ+) = 8
c1 − c2 + ic3

Λ4 [s2 + t2 + u2]
ℳ(γ+γ+γ−γ−) = 8

c1 + c2

Λ4
s2

ℳ(γ−γ−γ−γ−) = 8
c1 − c2 − ic3

Λ4 [s2 + t2 + u2]

s = (p1 + p2)2

t = (p1 + p3)2

u = (p1 + p4)2

p1
p2

p3p4

μ1 μ2

μ3μ4

32ic1

Λ4 (pμ2
1 pμ1

2 − p1p2ημ1μ2)(pμ4
3 pμ3

4 − p3p4ημ3μ4) + (2 ↔ 3) + (2 ↔ 4)

+
32ic2

Λ4 (…) +
32ic3

Λ4 (…)

Note that a non-zero c3  
violates parity!



Euler-Heisenberg EFT
ℒeff = −

1
4

FμνFμν +
1

Λ4 {c1(FμνFμν)2 + c2(FμνF̃μν)2 + c3(FμνFμν)(FαβF̃αβ)} + …

This is a healthy QFT, so we can calculate loop corrections 

p1
k

p2

μ1

μ2

p4

p3
k + p1 + p2

μ4

μ3

ℳ ∼
1
ϵ

cicj

Λ8
E8 + …

Dimensional analysis shows that we cannot absorb this divergence  
into the coefficients ci in the Lagrangian  

e.g. s4  or  s2 t2 dim. reg.

Instead we have to add new counterterms to the Lagragnian:

Δℒeff = d1(∂αFμν∂αFμν)2 + …
This EFT is not renormalizable in the usual sense of this word,  

because you need an infinite number of  counterterms to cancel all loop divergences in the theory

But it renormalizable in another sense: if at given order you include all terms allowed by 
symmetries, then all divergences can be canceled at this order



Euler-Heisenberg EFT

ℒeff = −
1
4

FμνFμν +
1

Λ4 {c1(FμνFμν)2 + c2(FμνF̃μν)2 + c3(FμνFμν)(FαβF̃αβ)} + …

• This is the effective theory of light at low energies (UV, visible, IR, microwaves, radio) 
at the leading non-trivial order 

• The quartic photon interaction terms in this EFT lead to non-linear field equations for 
the electromagnetic field. Thus, electrodynamics is really non-linear, and the 
superposition principle they taught you in school is not exactly true! Of course, the 
effect is tiny in typical engineer problems, cause they deal with energies far below Λ  

• One potentially observable effect  of the D=8 terms is the so-called vacuum 
birefringence, that is rotation of light polarization propagating in vacuum  in strong 
magnetic field. This effect was possibly observed in 2016 in a neutron star light.  

• Another potentially observable effect is light-by-light scattering.  This has been 
routinely observed in colliders, however at higher energies where this EFT is no longer 
valid.


Scattered comments:



UV completion of Euler-Heisenberg EFT

ℒeff = −
1
4

FμνFμν +
1

Λ4 {c1(FμνFμν)2 + c2(FμνF̃μν)2 + c3(FμνFμν)(FαβF̃αβ)} + …

Suppose, Jedi measure experimentally the coefficients ci /Λ4   

but they do not have means to reach the energy scale Λ

Can they deduce what is the fundamental theory underlying this EFT ?  

The answer is no in general. However they can do the following exercise:

1. Hypothesize a theory for which, below a certain mass scale Λ, the only degrees of 
freedom are those of the photon 

2. Perform the matching between the UV theory and the EFT, that is integrate out all 
particles heavier than Λ and calculate ci in terms of the parameters of the UV theory 

3. Verify if the predicted pattern of ci agrees with the one measured experimentally



ℒeff = −
1
4

FμνFμν +
1

Λ4 {c1(FμνFμν)2 + c2(FμνF̃μν)2 + c3(FμνFμν)(FαβF̃αβ)} + …

ci ∼ e2 if this Wilson coefficient is generated at tree level 

ci ∼
e4

16π2
if this Wilson coefficient is generated at 1-loop level 

γ

γ γ

γ
H

γ

γ γ

γ
H

γ
H

Doesn’t exist 
in QED !

γ

γ

H

H

Does exist 
in QED !

Thus, in QED

ci

Λ4
∼

e4

16π2m4
e

=
α2

m4
e

Moreover,  c3=0 in QED, 
due to parity conservation

UV completion of Euler-Heisenberg EFT



QED UV completion
ℒUV ⊃ iψ̄γμ∂μψ − meψ̄ψ + eAμψ̄γμψ

Thus, integrating out the electron at one-loop level yields:

c1

Λ4
=

α2

90m4
e

,
c2

Λ4
=

7α2

360m4
e

,
c3

Λ4
= 0

In this example, the UV completion of our effective theory is a renormalizable theory,  
which could in principle be valid to very high energy scales  

+reversed  
fermion line

ℳEFT(γ+γ+γ+γ+) = 8
c1 − c2 + ic3

Λ4 [s2 + t2 + u2]
ℳEFT(γ+γ+γ−γ−) = 8

c1 + c2

Λ4
s2

ℳEFT(γ−γ−γ−γ−) = 8
c1 − c2 − ic3

Λ4 [s2 + t2 + u2]

ℳQED(γ+γ+γ+γ+) = −
α2

15m4
e

[s2 + t2 + u2] + 𝒪(m−6
e )

ℳQED(γ+γ+γ−γ−) =
11α2

45m4
e

s2 + 𝒪(m−6
e )

ℳQED(γ−γ−γ−γ−) = −
α2

15m4
e

[s2 + t2 + u2] + 𝒪(m−6
e )

UV completion of Euler-Heisenberg EFT



ALP  UV completion

ℒUV ⊃
1
2

(∂μa)2 −
m2

a

2
a2 +

a
fa {gFμνFμν + g̃FμνF̃μν}

Integrating out the axion at tree-level:

c1

Λ4
=

g2

2f 2
am2

a
,

c2

Λ4
=

g̃2

2f 2
am2

a
,

c3

Λ4
=

gg̃
f 2

am2
a

In this example, the usual power counting, Λ~ma, is disrupted, because 
 the UV completion of an effective theory is itself an effective theory  

and contains other mass parameters than ma

Λ = fama

Note that

γ

γ γ

γ
a

UV completion of Euler-Heisenberg EFT



• In the absence of new physics, the ordinary QED is the UV completion of this EFT, in which case 
the cutoff Λ can be identified with 2me. However, in the presence of light axions or light milli-
charged particles, this may no longer be the case. 


• However, I’m not aware of a systematic experimental measurement of c1, c2, c3.   A future such  
measurement will be a non-trivial result, as some unknown light particles could in principle 
contribute to it, along with the electron and other SM charged particles 

UV completion of Euler-Heisenberg EFT

ℒeff = −
1
4

FμνFμν +
1

Λ4 {c1(FμνFμν)2 + c2(FμνF̃μν)2 + c3(FμνFμν)(FαβF̃αβ)} + …



Euler-Heisenberg EFT
Summary and lessons learned

• Symmetries of a low-energy system often determine the structure of the effective 
theory at leading orders, up to a few unknown numerical parameters 


• The EFT Lagrangian can be used for perturbative calculations of low-energy scattering 
amplitudes.  But it is also a useful tool to work out subtle effects of classical field 
configurations


• A difference between this EFT and a renormalizable QFT is that counterterms of 
order 1/Λn , also with n>4,  are generated at loop level, thus these higher-order terms 
have to be added to the Lagrangian  if we require precision beyond the 1/Λ4 order      


• Precision measurement of the parameters of the Euler-Heisenberg EFT would give us 
information about its UV completion, which could possibly lead to surprises 
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Illustration #2

SM  EFT



• Quantum Mechanics + Poincaré invariance  = relativistic Quantum Field Theory 

• Degrees of freedom: those of the SM (gluons, photon, W, Z, 6 quarks, 3 charged 
leptons, 3 neutrinos, Higgs doublet) 

• SU(3)xSU(2)xU(1) gauge invariance 

• Spontaneous breaking of SU(3)xSU(2)xU(1) down to SU(3)xU(1) 

• Validity regime up to energies smaller than the cutoff scale  Λ  

• No other mass scale in the EFT except for Λ and Higgs mass parameter µH 

Rules of the game

Starting from these principles, we will build an EFT  in systematic expansion in 1/Λ

ℒeff = Λ2ℒD=2 + ΛℒD=3 + ℒD=4 +
1
Λ

ℒD=5 +
1

Λ2
ℒD=6 +

1
Λ3

ℒD=7 +
1

Λ4
ℒD=8 + …

For E << Λ each consecutive term is more suppressed, therefore the expansion makes sense 

SMEFT



Standard Model

ℒD=4 = −
1
4 ∑

V∈B,Wi,Ga

VμνVμν −
g2

S

32π2
θ Ga

μνG̃a
μν

+ ∑
f∈q,u,d,l,e

if̄γμDμ f

−(ūYuqH + d̄YdH†q + ēYeH†l + h . c . )
+DμH†DμH − λ(H†H)2

Dμ f = ∂μ f − igsGa
μTaf − igLWi

μ
σi

2
f − igY BμYf

Va
μν = ∂μVa

ν − ∂νVa
μ + g f abcVb

μVc
ν

19 physical parameters, most of them measured  with a good precision, θ very well constrained 

The most general Lagrangian up to D=4 consistent with these principles is just the SM Lagrangian 

ℒD=2 =
μ2

H

Λ2
H†H

ℒD=3 = 0

Unsolved mystery why the suppression by , 
which is called the hierarchy problem   

μ2
H /Λ2

ℒSM ≡ Λ2ℒD=2 + Λ0ℒD=4



SMEFT

Known SM   
Lagrangian Higher-dimensional 

SU(3)C x SU(2)L x U(1)Y invariant  
interactions added to the SM

ℒSMEFT = ℒSM +
1
Λ

ℒD=5 +
1

Λ2
ℒD=6 +

1
Λ3

ℒD=7 +
1

Λ4
ℒD=8 + …

At each order we should include a complete and non-redundant set of operators 
eventually subject to some additional global symmetries

The dominant paradigm is that everything is EFT,  
and so the SM is a part of an EFT called SMEFT 

SMEFT obeys the same fundamental principles as the SM,  
except that we don’t truncate the expansion at D=4 



• At dimension 5, the only operators one can construct are the so-called Weinberg 
operators, which break the lepton number


• After electroweak symmetry breaking they give rise to Majorana mass terms for 
the SM (left-handed) neutrinos


• Neutrino oscillation experiments strongly suggest that these operators are present  
(unless neutrino masses are of the Dirac type)

ℒSMEFT = ℒSM +
1
Λ

ℒD=5 +
1

Λ2
ℒD=6 +

1
Λ3

ℒD=7 +
1

Λ4
ℒD=8 + …

cij

Λ
(LiH)(LjH) + h . c . → cij

v2

Λ
νiνj + h . c .

SMEFT at dimension-5

H → (
0

v/ 2)
Li → (νi

ei)

This is a huge success of SMEFT: corrections to the SM Lagrangian predicted 
at the leading order in the EFT expansion, are indeed observed in experiment!



SMEFT at dimension-5

ℒSMEFT ⊃ cij
v2

Λ
νiνj + h . c .

Neutrino masses or most likely in the 0.01 eV - 0.1 eV ballpark  
 (while the lightest neutrino may even be massless)

ℒSMEFT = ℒSM +
1
Λ

ℒD=5 +
1

Λ2
ℒD=6 +

1
Λ3

ℒD=7 +
1

Λ4
ℒD=8 + …

It follows that Λ /cij ~ 1015 GeV 

One problem now:

If this is really the correct expansion, then we will never see any other effects  
of higher-dimensional operators, except possibly of baryon-number violating ones :/ 

Dimension-5 terms affect only neutrino physics, no other effects are observable

If Λ ~ 1015 GeV then most  dimension-6 and higher terms are too suppressed to be observable  



?

Career opportunities



SMEFT at dimension-5

Dimension-5 interactions are special because they violate lepton number L.  
If we assume that the mass scale of new particles with L-violating interactions  is ΛL,  

and there is also L-conserving new physics at the scale Λ << ΛL , then the expansion is  

ℒSMEFT = ℒSM +
1
Λ

ℒD=5 +
1

Λ2
ℒD=6 +

1
Λ3

ℒD=7 +
1

Λ4
ℒD=8 + …

If this is really the correct expansion, then we will never see any other effects  
of higher-dimensional operators, except possibly of baryon-number violating ones :/ 

Moreover, it is possible that there is more than one mass scale of new physics

ℒSMEFT = ℒSM +
1

ΛL
ℒD=5 +

1
Λ2

ℒD=6 +
1

Λ3
L

ℒD=7 +
1

Λ4
ℒD=8 + …

This is our working assumption, not because it is strongly motivated by data 
but because the alternative  is too depressing

Another possibility, however is that Λ is much lower, but the UV sector (heavy neutrinos) 
couples very weekly to the SM degrees of freedom



ℒSMEFT = ℒSM +
1

ΛL
ℒD=5 +

1
Λ2

ℒD=6 +
1

Λ3
L

ℒD=7 +
1

Λ4
ℒD=8 + …

SMEFT at dimension-6

If Λ << ΛL , leading non-SM effects in collider and precision physics may come  
from  dimension-6 operators

There is 2499 of baryon-number-conserving D=6 operators,  
and another handful of  B-violating operators 



SMEFT at dimension-6

ℒSMEFT = ℒSM +
1

ΛL
ℒD=5 +

1
Λ2

ℒD=6 +
1

Λ3
L

ℒD=7 +
1

Λ4
ℒD=8 + …

The fields Gz and G± do not correspond to new physical degrees of freedom (they

kinetically mix with the massive gauge bosons and can be gauged away). From now

on until Chapter 5 I will work in the unitary gauge and set G± = 0 = Gz. The

scalar field h corresponds to a scalar particle called the Higgs boson. Its mass can be

expressed by the parameters of the Higgs potential as

m2
h
= 2µ2

H
= 2�v2. (2.19)

2.2 Dimension-6 operators

Bosonic CP-even

OH (H†H)3

OH⇤ (H†H)⇤(H†H)

OHD

��H†DµH
��2

OHG H†H Ga
µ⌫G

a
µ⌫

OHW H†HW i
µ⌫W

i
µ⌫

OHB H†H Bµ⌫Bµ⌫

OHWB H†�iHW i
µ⌫Bµ⌫

OW ✏ijkW i
µ⌫W

j
⌫⇢W k

⇢µ

OG fabcGa
µ⌫G

b
⌫⇢G

c
⇢µ

Bosonic CP-odd

O
H eG H†H eGa

µ⌫G
a
µ⌫

O
HfW H†H fW i

µ⌫W
i
µ⌫

O
H eB H†H eBµ⌫Bµ⌫

O
HfWB

H†�iH fW i
µ⌫Bµ⌫

OfW ✏ijkfW i
µ⌫W

j
⌫⇢W k

⇢µ

O eG fabc eGa
µ⌫G

b
⌫⇢G

c
⇢µ

Table 2.2: Bosonic D=6 operators in the Warsaw basis.

We turn to discussing operators with canonical dimensions D=6 in Eq. (2.1).

Their importance for characterizing low-energy e↵ects of heavy particles has been

recognized long ago, see e.g. [21, 35]. More recently, advantages of using a complete

and non-redundant set of operators have been emphasized. The point is that seem-

ingly di↵erent higher-dimensional operators can have the same e↵ect on on-shell am-

plitudes of the SM particles. This is the case if the operators can be related by using

equations of motion, integration by parts, field redefinitions, or Fierz transformations.
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This leads to non-trivial and often counter-intuitive relations between operators. For

example, by using equations of motion one can establish equivalence between purely

bosonic operators, and a linear combination of 2- and 4-fermionic operators! Thus,

starting from the set of all distinct D=6 operators that can be constructed from the

SM fields, a number of these operators will be redundant as they are equivalent to

linear combinations of other operators. The redundant operators can be removed to

simplify the EFT description, and to establish an unambiguous map from observables

to the EFT Wilson coe�cients. A minimal, non-redundant set of operators is called

a basis.

Yukawa

[O†
eH

]IJ H†Hec
I
H†`J

[O†
uH

]IJ H†Huc
I
eH†qJ

[O†
dH

]IJ H†Hdc
I
H†qJ

Vertex

[O(1)
H`

]IJ i¯̀I �̄µ`JH† !DµH

[O(3)
H`

]IJ i¯̀I�i�̄µ`JH†�i
 !
DµH

[OHe]IJ iec
I
�µēcJH

† !DµH

[O(1)
Hq

]IJ iq̄I �̄µqJH† !DµH

[O(3)
Hq

]IJ iq̄I�i�̄µqJH†�i
 !
DµH

[OHu]IJ iuc
I
�µūcJH

† !DµH

[OHd]IJ idc
I
�µd̄cJH

† !DµH

[OHud]IJ iuc
I
�µd̄cJH̃

†DµH

Dipole

[O†
eW

]IJ ec
I
�µ⌫H†�i`JW i

µ⌫

[O†
eB

]IJ ec
I
�µ⌫H†`JBµ⌫

[O†
uG

]IJ uc
I
�µ⌫T a eH†qJ Ga

µ⌫

[O†
uW

]IJ uc
I
�µ⌫ eH†�iqJ W i

µ⌫

[O†
uB

]IJ uc
I
�µ⌫ eH†qJ Bµ⌫

[O†
dG

]IJ dc
I
�µ⌫T aH†qJ Ga

µ⌫

[O†
dW

]IJ dc
I
�µ⌫H̄†�iqJ W i

µ⌫

[O†
dB

]IJ dc
I
�µ⌫H†qJ Bµ⌫

Table 2.3: Two-fermion D=6 operators in the Warsaw basis. The flavor indices are
denoted by I, J . For complex operators (OHud and all Yukawa and dipole operators)
the corresponding complex conjugate operator is implicitly included.

Because of a humungous number of D=6 operators, and because establishing

equivalence between operators may be time consuming, identifying a basis is not a

14

(R̄R)(R̄R)

Oee ⌘(ec�µēc)(ec�µēc)

Ouu ⌘(uc�µūc)(uc�µūc)

Odd ⌘(dc�µd̄c)(dc�µd̄c)

Oeu (ec�µēc)(uc�µūc)

Oed (ec�µēc)(dc�µd̄c)

Oud (uc�µūc)(dc�µd̄c)

O0
ud

(uc�µT aūc)(dc�µT ad̄c)

(L̄L)(R̄R)

O`e (¯̀̄�µ`)(ec�µēc)

O`u (¯̀̄�µ`)(uc�µūc)

O`d (¯̀̄�µ`)(dc�µd̄c)

Oeq (ec�µēc)(q̄�̄µq)

Oqu (q̄�̄µq)(uc�µūc)

O0
qu

(q̄�̄µT aq)(uc�µT aūc)

Oqd (q̄�̄µq)(dc�µd̄c)

O0
qd

(q̄�̄µT aq)(dc�µT ad̄c)

(L̄L)(L̄L)

O`` ⌘(¯̀̄�µ`)(¯̀̄�µ`)

Oqq ⌘(q̄�̄µq)(q̄�̄µq)

O0
qq

⌘(q̄�̄µ�iq)(q̄�̄µ�iq)

O`q (¯̀̄�µ`)(q̄�̄µq)

O0
`q

(¯̀̄�µ�i`)(q̄�̄µ�iq)

(L̄R)(L̄R)

Oquqd (ucqj)✏jk(dcqk)

O0
quqd

(ucT aqj)✏jk(dcT aqk)

O`equ (ec`j)✏jk(ucqk)

O0
`equ

(ec�̄µ⌫`j)✏jk(uc�̄µ⌫qk)

O`edq (¯̀̄ec)(dcq)

Table 2.4: Four-fermion D=6 operators in the Warsaw basis. Flavor indices are
suppressed here to reduce the clutter. The factor ⌘ is equal to 1/2 when all flavor
indices are equal (e.g. in [Oee]1111), and ⌘ = 1 otherwise. For each complex operator
the complex conjugate should be included.

be more easily linked to collider observables such as (di↵erential) cross sections and

decay widths.

Deriving collider predictions in an EFT with higher-dimensional operators involves

several subtleties that need to be taken into account.

• In the SM, the electroweak parameters gL, gY , v are customarily determined

from input observables: the electromagnetic coupling constant ↵, the Z boson

mass mZ , and the muon lifetime ⌧µ. In the presence of D=6 operators the

SM relations between the input observables and the Lagrangian parameters

can be distorted. For example, the bosonic operator OHD contributes to the
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|H |6 |H |2 Ga
μνGa

μν

|H |2 Wa
μνWa

μν| H |2 W a
μν W̃ a

μν
|H |2 Ga

μν G̃ a
μν | H |2 Bμ ν Bμ ν

| H |2 Bμ ν B̃ μ ν
Ga

μνGa
νρ G̃ a

ρμ



1 GeV

5 GeV

γ,g,νi,e,μ,τ + u, d, s, c  2 GeV

γ,νi,e,μ + hadrons  

γ,νi,e,μ + pions and kaons 100 MeV

γ,g,νi,e,μ,τ + u, d, s, c, b  

100 GeV

1 MeV γ,νi,e

γ,νi

γ,g,W,Z,νi,e,μ,τ + u, d, s, c, b, t + h  

100 TeV
???



Illustration #3

Weak EFT



Muon decay in the SM
In the SM, weak interactions are mediated by W and Z bosons:

ℒSM ⊃
gL

2
[ν̄LγρeL + ν̄μγρμL]W+

ρ + h . c .
i

gL

2
γρPL

i
gL

2
γρPL

e

νe

Wρ

In this theory, calculate muon decay

νμ

Wρ

μ

Wρ −i
ημν

p2 − m2
WTree-level amplitude:

ℳ =
g2

L

2
ū(k2)γρPLu(p1)

1
q2 − m2

W
ū(k4)γρPLv(k3)

νμ

W−

μ−

ν̄e

e−

p1

k2

k3

k4

q = p1 − k2
u(p) and v(p) are spinor wave functions 

for particles and anti-particles



Tree-level amplitude:

ℳ =
g2

L

2
ū(k2)γρPLu(p1)

1
q2 − m2

W
ū(k4)γρPLv(k3)

νμ

W−

μ−

ν̄e

e−

p1

k2

k3

k4q = p1 − k2

But kinematics of muon decay puts the constraint q2 ≲ m2
μ ≪ m2

W

For all practical purpose one can thus approximate

ℳ = −
g2

L

2m2
W

ū(k2)γρPLu(p1)ū(k4)γρPLv(k3) + 𝒪(q2/m4
W)

This approximate amplitude can be equally well obtained from the effective Lagrangian 

ℒeff ⊃ −
g2

L

2m2
W

(ν̄μγρμL)(ēLγρνL) + h . c .

νμ

μ νe

e

−i
g2

L

2m2
W

[γρPL][γρPL]

Muon decay in the SM



• Many interesting particle physics processes, like muon decay, meson 
decays and oscillations, beta transitions, neutrino scattering on nuclei, 
EDMs, etc.,  occur with characteristic energy far below the electroweak 
scale (E << 100 GeV)


• At these energies W, Z, and also Higgs and top do not propagate, and 
can be integrated out from the theory, in order to simplify it but also to 
improve its convergence


• The weak and Higgs interactions mediated by those force carriers in 
the SMEFT are mimicked in the WEFT by contact interactions between 
light degrees of freedom: leptons, quarks, etc.    


• The resulting EFT is called here the Weak EFT, or the WEFT in short 
(also names LEFT and WET exist in the literature)

EFT below the electroweak scale



• Quantum Mechanics + Poincaré invariance  = relativistic Quantum Field Theory 

• Degrees of freedom: gluons, photon, 5 quarks, 3 charged leptons, 3 neutrinos 

• SU(3)xU(1)em gauge invariance 

• Validity regime up to energies smaller than the cutoff scale  Λ = mW  

• No other mass scale in the EFT except for Λ and particles’ masses 

Rules of the game

Starting from these principles, we will build an EFT  in systematic expansion in 1/Λ

ℒeff = ΛℒD=3 + ℒD=4 +
1
Λ

ℒD=5 +
1

Λ2
ℒD=6 +

1
Λ3

ℒD=7 +
1

Λ4
ℒD=8 + …

For E << Λ each consecutive term is more suppressed, therefore the expansion makes sense 

WEFT



B LEFT Operator Basis

This appendix lists the LEFT operators up to dimension six. Weak-eigenstate indices of the

operators are not shown—e.g. OV,LL
ee with the weak-eigenstate indices included is OV,LL

ee
prst

.

νν +h.c.

Oν (νTLpCνLr)

(νν)X +h.c.

Oνγ (νTLpCσ
µννLr)Fµν

(LR)X +h.c.

Oeγ ēLpσµνeRr Fµν

Ouγ ūLpσµνuRr Fµν

Odγ d̄LpσµνdRr Fµν

OuG ūLpσµνTAuRr GA
µν

OdG d̄LpσµνTAdRr GA
µν

X3

OG fABCGAν
µ GBρ

ν GCµ
ρ

OG̃ fABCG̃Aν
µ GBρ

ν GCµ
ρ

(LL)(LL)

OV,LL
νν (ν̄LpγµνLr)(ν̄LsγµνLt)

OV,LL
ee (ēLpγµeLr)(ēLsγµeLt)

OV,LL
νe (ν̄LpγµνLr)(ēLsγµeLt)

OV,LL
νu (ν̄LpγµνLr)(ūLsγµuLt)

OV,LL
νd (ν̄LpγµνLr)(d̄LsγµdLt)

OV,LL
eu (ēLpγµeLr)(ūLsγµuLt)

OV,LL
ed (ēLpγµeLr)(d̄LsγµdLt)

OV,LL
νedu (ν̄LpγµeLr)(d̄LsγµuLt) + h.c.

OV,LL
uu (ūLpγµuLr)(ūLsγµuLt)

OV,LL
dd (d̄LpγµdLr)(d̄LsγµdLt)

OV 1,LL
ud (ūLpγµuLr)(d̄LsγµdLt)

OV 8,LL
ud (ūLpγµTAuLr)(d̄LsγµTAdLt)

(RR)(RR)

OV,RR
ee (ēRpγµeRr)(ēRsγµeRt)

OV,RR
eu (ēRpγµeRr)(ūRsγµuRt)

OV,RR
ed (ēRpγµeRr)(d̄RsγµdRt)

OV,RR
uu (ūRpγµuRr)(ūRsγµuRt)

OV,RR
dd (d̄RpγµdRr)(d̄RsγµdRt)

OV 1,RR
ud (ūRpγµuRr)(d̄RsγµdRt)

OV 8,RR
ud (ūRpγµTAuRr)(d̄RsγµTAdRt)

(LL)(RR)

OV,LR
νe (ν̄LpγµνLr)(ēRsγµeRt)

OV,LR
ee (ēLpγµeLr)(ēRsγµeRt)

OV,LR
νu (ν̄LpγµνLr)(ūRsγµuRt)

OV,LR
νd (ν̄LpγµνLr)(d̄RsγµdRt)

OV,LR
eu (ēLpγµeLr)(ūRsγµuRt)

OV,LR
ed (ēLpγµeLr)(d̄RsγµdRt)

OV,LR
ue (ūLpγµuLr)(ēRsγµeRt)

OV,LR
de (d̄LpγµdLr)(ēRsγµeRt)

OV,LR
νedu (ν̄LpγµeLr)(d̄RsγµuRt) + h.c.

OV 1,LR
uu (ūLpγµuLr)(ūRsγµuRt)

OV 8,LR
uu (ūLpγµTAuLr)(ūRsγµTAuRt)

OV 1,LR
ud (ūLpγµuLr)(d̄RsγµdRt)

OV 8,LR
ud (ūLpγµTAuLr)(d̄RsγµTAdRt)

OV 1,LR
du (d̄LpγµdLr)(ūRsγµuRt)

OV 8,LR
du (d̄LpγµTAdLr)(ūRsγµTAuRt)

OV 1,LR
dd (d̄LpγµdLr)(d̄RsγµdRt)

OV 8,LR
dd (d̄LpγµTAdLr)(d̄RsγµTAdRt)

OV 1,LR
uddu (ūLpγµdLr)(d̄RsγµuRt) + h.c.

OV 8,LR
uddu (ūLpγµTAdLr)(d̄RsγµTAuRt) + h.c.

(LR)(LR) + h.c.

OS,RR
ee (ēLpeRr)(ēLseRt)

OS,RR
eu (ēLpeRr)(ūLsuRt)

OT,RR
eu (ēLpσµνeRr)(ūLsσµνuRt)

OS,RR
ed (ēLpeRr)(d̄LsdRt)

OT,RR
ed (ēLpσµνeRr)(d̄LsσµνdRt)

OS,RR
νedu (ν̄LpeRr)(d̄LsuRt)

OT,RR
νedu (ν̄LpσµνeRr)(d̄LsσµνuRt)

OS1,RR
uu (ūLpuRr)(ūLsuRt)

OS8,RR
uu (ūLpTAuRr)(ūLsTAuRt)

OS1,RR
ud (ūLpuRr)(d̄LsdRt)

OS8,RR
ud (ūLpTAuRr)(d̄LsTAdRt)

OS1,RR
dd (d̄LpdRr)(d̄LsdRt)

OS8,RR
dd (d̄LpTAdRr)(d̄LsTAdRt)

OS1,RR
uddu (ūLpdRr)(d̄LsuRt)

OS8,RR
uddu (ūLpTAdRr)(d̄LsTAuRt)

(LR)(RL) + h.c.

OS,RL
eu (ēLpeRr)(ūRsuLt)

OS,RL
ed (ēLpeRr)(d̄RsdLt)

OS,RL
νedu (ν̄LpeRr)(d̄RsuLt)

Table 7. The operators for LEFT of dimension three, five, and six that conserve baryon and lepton
number, and the dimension-three and dimension-five ∆L = ±2 operators. The dimension-three
∆L = 2 operator Oν is the Majorana-neutrino mass operator, while the dimension-five ∆L = 2
operator Oνγ is the Majorana-neutrino dipole operator. There are 5 additional dimension-five
dipole operators (L̄R)X . The 80 dimension-six operators consist of 2 pure gauge operators X3

and 78 four-fermion operators ψ4, which are further divided by their chiral structure. The ψ4

operator superscripts V , S, T refer to products of vector, scalar, and tensor fermion bilinears, and
the additional two labels L or R refer to the chiral projectors in the bilinears. Operators with +h.c.
have Hermitian conjugates. The subscripts p, r, s, t are weak-eigenstate indices.

– 32 –

Jenkins et al 
[arXiv:1709.04486] 

D=3 D=5 D=6

WEFT

We focus 
on a small 
subset of 

those



ℒSM ⊃ − W+
ρ ( □ − m2

W)W−
ρ +

gL

2
{[ν̄LγρeL + VudūLγρdL]W+

ρ + h . c . }

−( □ − m2
W)W−

ρ +
gL

2
[ν̄LγρeL + VudūLγρdL] = 0e.o.m:

solution: W−
ρ =

gL

2
( □ − m2

W)−1[ν̄LγρeL + VudūLγρdL] ≈ −
gL

2m2
W

[ν̄LγρeL + VudūLγρdL]

Starting point:

Leading effective 4-fermion interactions:

ℒWEFT ⊃ −
g2

L

2m2
W

[ēLγρνL + Vudd̄LγρuL][ν̄LγρeL + VudūLγρdL] ⊃ −
2Vud

v2
(ēLγρνL)(ūLγρdL)

Charged current interactions in SM
Consider low-energy interactions between light quarks and leptons 

v ≡
2mW

gL
≈ 246 GeV

SM CKM element

u

d νe

e

u

W−

d
ν̄e

e−



Charged current interactions in SMEFT and WEFT
Three new elements appear in SMEFT regarding the charged currents: 
1. Coupling strength of W to quarks and leptons can be modified compared to the SM 
2. W boson can now couple to right-handed  quarks as well   
3. Charged currents are mediated not only by W, but also by new contact interactions 

1 ℒSMEFT ⊃
cHQ

Λ2
H†σaDμH(Q̄σaγμQ) +

cHL

Λ2
H†σaDμH(L̄σaγμL)

After Higgs gets a VEV

ℒSMEFT ⊃
gL

2 [1 +
cHLv2

Λ2 ]W+
ρ ν̄LγρeL + Vud

gL

2 [1 +
cHQv2

Λ2 ]W+
ρ ūLγρdL + h . c .

ℒWEFT ⊃ −
2Vud

v2 [1 +
cHLv2

Λ2 ][1 +
cHQv2

Λ2 ](ēLγρνL)(ūLγρdL) ≈ −
2Vud

v2 [1 + (cHL + cHQ) v2

Λ2 ](ēLγρνL)(ūLγρdL)

Integrating out W boson

u

d νe

e

Same effective interaction 
as in WEFT derived from SM 

but with a different Wilson coefficient

u

W−

d
ν̄e

e−



Charged current interactions in SMEFT and WEFT
Three new elements appear in SMEFT regarding the charged currents: 
1. Coupling strength of W to quarks and leptons can be modified compared to the SM 
2. W boson can now couple to right-handed  quarks as well   
3. Charged currents are mediated not only by W, but also by new contact interactions 

2 ℒSMEFT ⊃
cHud

Λ2
HTDμH(ūRγμdR)

After Higgs gets a VEV

ℒSMEFT ⊃
gL

2 [1 +
cHLv2

Λ2 ]W+
ρ ν̄LγρeL +

gL

2 [ cHudv2

2Λ2 ]W+
ρ ūRγρdR + h . c .

ℒWEFT ⊃ −
2
v2 [1 +

cHLv2

Λ2 ][ cHudv2

2Λ2 ](ēLγρνL)(ūRγρdR) ≈ −
2Vud

v2 [ cHudv2

2VudΛ2 ](ēLγρνL)(ūRγρdR)

Integrating out W boson

u

W−

d
ν̄e

e−
u

d νe

e

Different effective interaction 
than in WEFT derived from SM



Charged current interactions in SMEFT and WEFT
Three new elements appear in SMEFT regarding the charged currents: 
1. Coupling strength of W to quarks and leptons can be modified compared to the SM 
2. W boson can now couple to right-handed  quarks as well   
3. Charged currents are mediated not only by W, but also by new contact interactions 

ℒSMEFT ⊃
c(3)

LQ

Λ2
(Q̄σaγμQ)(L̄σaγμL) +

c(3)
LeQu

Λ2
(ēRσμνL)(ūRσμνQ)

+
cLeQu

Λ2
(ēRL)(ūRQ) +

cLedQ

Λ2
(L̄eR)(d̄RQ)

u

d νe

e The last 3 terms are 
Different effective interaction 

than in WEFT derived from SM

3

ℒWEFT ⊃
2Vud

v2 { c(3)
LQv2

Λ2
(ēLγρνL)(ūLγρdL) +

c(3)
LeQuv2

2Λ2
(ēRσμννL)(ūRσμνdL)

+
cLeQuv2

2Λ2
(ēRνL)(ūRdL) +

cLedQv2

2VudΛ2
(ν̄LeR)(d̄RuL)}

u

d νe

e

First terms is same effective interaction 
as in WEFT derived from SM 

but with a different Wilson coefficient



Charged current in WEFT

CKM element

ℒWEFT ⊃ −
2Vud

v2 { (1+ϵL) ēLγμνL ⋅ ūLγμdL

+ϵR ēLγμνL ⋅ ūRγμdR

+ϵT
1
4

ēRσμννL ⋅ ūRσμνdL

+ϵS
1
2

ēRνL ⋅ ūd

−ϵP
1
2

ēRνL ⋅ ūγ5d} + h . c .

Left-handed  
neutrino

v =
1

2GF

≈ 246 GeV

Normalization scale,  
set by Fermi constant

Pseudo-scalar

Scalar

Tensor

V+A

V-A

To summarise, starting from the SMEFT and integrating out W in the quark-lepton 
charged current sector, we arrived at the following interactions 

WEFT leads to a simpler description 
at low energies: 

number of parameters reduced 
wrt to the SMEFT 



At the scale mW, WEFT parameters εX map to dimension-6 operators in the SMEFT

ϵL = [cHL + cHQ − c(3)
LQ] v2

Λ2
+ …

ϵR =
1

2Vud
cHud

v2

Λ2

ϵS = −
1

2Vud
[VudcLeQu + c*LedQ] v2

Λ2

ϵT = −2c(3)
LeQu

v2

Λ2

ϵP = −
1

2Vud
[VudcLeQu − c*LedQ] v2

Λ2

Translation from low-to-high energy EFT
The EFT below the weak scale (WEFT)  

can be matched to the EFT above the weak scale (SMEFT)

ℒSMEFT ⊃ cHQH†σaDμH(Q̄σaγμQ) + cHLH†σaDμH(L̄σaγμL)

+cHudHT DμH(ūRγμdR)

+c(3)
LQ(Q̄σaγμQ)(L̄σaγμL) + c(3)

LeQu(ēRσμνL)(ūRσμνQ)

+cLeQu(ēRL)(ūRQ) + cLedQ(L̄eR)(d̄RQ)

more subtle…

ℒWEFT ⊃ −
2Vud

v2 { (1+ϵL) ēLγμνL ⋅ ūLγμdL

+ϵR ēRγμνL ⋅ ūRγμdR

+ϵT
1
4

ēRσμννL ⋅ ūRσμνdL

+ϵS
1
2

ēRνL ⋅ ūd

−ϵP
1
2

ēRνL ⋅ ūγ5d} + h . c .



1 GeV

5 GeV

γ,g,νi,e,μ,τ + u, d, s, c  2 GeV

γ,νi,e,μ + hadrons  

γ,νi,e,μ + pions and kaons 100 MeV

γ,g,νi,e,μ,τ + u, d, s, c, b  

100 GeV

1 MeV γ,νi,e

γ,νi

γ,g,W,Z,νi,e,μ,τ + u, d, s, c, b, t + h  

100 TeV
???



1 GeV

5 GeV

γ,g,νi,e,μ,τ + u, d, s, c  2 GeV

γ,νi,e,μ + hadrons  

γ,νi,e,μ + pions and kaons 100 MeV

γ,g,νi,e,μ,τ + u, d, s, c, b  

100 GeV

1 MeV γ,νi,e

γ,νi

γ,g,W,Z,νi,e,μ,τ + u, d, s, c, b, t + h  

100 TeV
???

?



Illustration #4

Fermi EFT



• At a scale of order 2 GeV  the quarks of WEFT becomes 
strongly interacting


• Below that scale, the useful degrees of freedom are no 
longer quarks but hadrons: baryons and mesons 


• We have to switch our EFT description to take into account 
the new degrees of freedom (and the lack of quarks)


• I focus on a special sector of the that EFT, which describes 
beta transitions involving nucleons (protons and neutrons) 
and leptons


• I call this the Fermi EFT 

From WEFT to Fermi EFT



ℒWEFT ⊃ −
2Vud

v2
(ēLγρνL)(ūLγρdL) + h . c .

This interaction leads to beta decays, in particular to the neutron decay

d → ue−ν̄e ⇒ n → pe−ν̄e

Amplitude for the latter process is 

M(n → pe−ν̄e) = −
2Vud

v2
⟨pe−ν̄e | (ēLγρνL)(ūLγρdL) |n >

= −
2Vud

v2
⟨e−ν̄e | (ēLγρνL) |0 > ⟨p | (ūLγρdL) |n >

= −
2Vud

v2 (ū(pe)γρPLv(pν))⟨p | (ūLγρdL) |n >

= −
Vud

v2 (ū(pe)γρPLv(pν)){⟨p | (ūγρd) |n > − ⟨p | (ūγργ5d) |n > }

PL ≡
1 − γ5

2

where u(p), v(p) are the usual spinor wave functions for particle and antiparticles

From WEFT to Fermi EFT
Let us take only SM-derived interactions for the start:



M(n → pe−ν̄e) = −
Vud

v2 (ū(pe)γρPLv(pν)){⟨p | (ūγρd) |n > − ⟨p | (ūγργ5d) |n > }
Fermi EFT

Due to strong QCD interaction, the quark matrix element cannot be calculated perturbatively 

However, with the input from dimensional analysis and QCD (approximate) symmetries 
they can be reduced to a few unknowns,  

which can be subsequently calculated on the lattice or using phenomenological models 

⟨p | (ūγρd) |n > = ū(pp)[gV(q2)γρ +
g̃TV(q2)

2mn
σρνqν +

g̃S(q2)
2mn

qρ]u(pn)

⟨p | (ūγργ5d) |n > = ū(pp)[gA(q2)γρ +
g̃TA(q2)

2mn
σρνqν +

g̃P(q2)
2mn

qρ]γ5u(pn)

q ≡ pn − pp

Lorentz invariance + Parity of QCD  implies



M(n → pe−ν̄e) = −
Vud

v2 (ū(pe)γρPLv(pν)){⟨p | (ūγρd) |n > − ⟨p | (ūγργ5d) |n > }
Fermi EFT

⟨p | (ūγρd) |n > = gVū(pp)γρu(pn) + 𝒪(q)
⟨p | (ūγργ5d) |n > = gAū(pp)γργ5u(pn) + 𝒪(q)

q ≡ pn − pp

For beta decay processes, and especially for neutron decay, recoil is much smaller than 
nucleon mass. Therefore at the leading order one can approximate

where gV=gV(0) and gA=gA(0) are now numbers, called the vector and axial charges 

 Furthermore, in the isospin symmetric gV=1, because the quark current is the isospin current 
One can prove that departures of gV from one are second order in isospin breaking, thus tiny 

M(n → pe−ν̄e) = −
Vud

v2 (ū(pe)γρPLv(pν)){ū(pp)γρu(pn) − gAū(pp)γργ5u(pn) + 𝒪(q)}
All in all



Fermi EFT

ℒFermi ⊃ −
Vud

v2
(ēLγρνe){(p̄γρn) − gA(p̄γργ5n)} + h . c. + 𝒪( q

mn )

M(n → pe−ν̄e) = −
Vud

v2 (ū(pe)γρPLv(pν)){ū(pp)γρu(pn) − gAū(pp)γργ5u(pn) + 𝒪(q)}
ℒWEFT ⊃ −

2Vud

v2
(ēLγρνe)(ūLγρdL) + h . c .

The non-perturbative parameter gA  appearing in this matching  
has to be calculated on the lattice or measured  in experiment

Matching

as our n→p e ν  amplitude can be obtained from this effective Lagrangian

Lattice

gA = 1.271 ± 0.013

Experiment

gA = 1.27536 ± 0.00041



ℒWEFT ⊃ −
2Vud

v2 { (1+ϵL) ēLγμνL ⋅ ūLγμdL

+ϵR ēRγμνL ⋅ ūRγμdR

+ϵS
1
2

ēRνL ⋅ ūd

+ϵT
1
4

ēRσμννL ⋅ ūRσμνdL

−ϵP
1
2

ēRνL ⋅ ūγ5d} + h . c .

Fermi EFT
Now let’s take into account  

non-SM interactions in WEFT

ℒFermi ⊃ −C+
V p̄γμn ēLγμνL

−C+
A p̄γμγ5n ēLγμνL

−C+
S p̄n ēRνL

−
1
2

C+
T p̄σμνn ēRσμννL

+C+
P p̄γ5n ēRνL +h . c .

At nucleon scale, we then get  
more general set of interactions

C+
V =

Vud

v2
1 + ΔV

R(1 + ϵL + ϵR)

C+
A = −

Vud

v2
gA 1 + ΔA

R(1 + ϵL − ϵR)

C+
T =

Vud

v2
gTϵT

C+
S =

Vud

v2
gSϵS

C+
P =

Vud

v2
gPϵP

Dictionary is  
obtained along 
the same lines  
as in SM case

T.D. Lee and C.N. Yang (1956) 

gS = 1.02 ± 0.10, gT = 0.989 ± 0.034

Flag’19

Gupta et al

1806.09006 

Gonzalez-Alonso et al 
1803.08732 

gA = 1.251 ± 0.033

gP = 349 ± 9

ΔV
R = 0.02467(22)

Hayen   
2010.07262

Seng et al 
1807.10197

ΔA
R − ΔV

R = 4.07(8) × 10−3

Short-distance 
radiative corrections



Down the rabbit hole
ℒFermi ⊃ −C+

V p̄γμn ēLγμνL

−C+
A p̄γμγ5n ēLγμνL

−C+
S p̄n ēRνL

−
1
2

C+
T p̄σμνn ēRσμννL

+C+
P p̄γ5n ēRνL +h . c .

This is a relativistic Lagrangian,  
and may not be most convenient to use 

for non-relativistic processes 

In neutron decay the momentum transfer is much smaller then the nucleon mass,  
due to the tiny mass splitting between neutron and proton. 

It is thus convenient to change variables in the Lagrangian,   
and use non-relativistic version of the  neutron and proton quantum fields 

N →
e−imNt

2 (1 + i
σ ⋅ ∇
2mN )ψN + 𝒪(∇2), N = p, n

ℒNR
Fermi ⊃ −(ψ̄pψn)[C+

V ēLνL+C+
S ēRνL] − (ψ̄pσkψn)[C+

A ēLσkνL+C+
T ēRσkνL] + 𝒪(∇/mn)

In these variables, and expanding in powers of ∇,  the Lagrangian simplifies

It is clear that pseudoscalar couplings do not affect neutron decay at leading order



ℒNR
Fermi ⊃ −(ψ̄pψn)[C+

V ēLνL+C+
S ēRνL] −

3

∑
k=1

(ψ̄pσkψn)[C+
A ēLσkνL+C+

T ēRσkνL] + 𝒪(∇/mn)

Non-relativistic Fermi EFT

This Lagrangian can also describe beta decays of nuclei: N → N′ e−ν̄

ℳ = − ℳF[C+
V (x̄3y4) + C+

S (y3y4)] −
3

∑
k=1

ℳk
GT[C+

A (x̄3σky4) + C+
T (y3σky4)]

where the Fermi and Gamow-Teller matrix elements are 

ℳF ≡ ⟨𝒩′ | ψ̄pψn |𝒩⟩ ℳk
GT ≡ ⟨𝒩′ | ψ̄pσkψn |𝒩⟩

Fermi transitions
Calculable from group theory 

in the isospin limit

Gamow-Teller transitions
Difficult to calculate 
from first principles

The use of non-relativistic EFT allows one to reduce the problem of calculating 
amplitudes for allowed beta transitions of nuclei to calculating 

two nuclear matrix elements

Forbidden transitions correspond to higher order terms in the non-relativistic expansion
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