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Timetable

2 lectures on EFT, at a fairly elementary level (I hope)

e |Lecture 1 (Tuesday 10:30-12:00):
Philosophy and Landscape of EFTs

o Lec:ture 2 (Thursday 10 30 12 OO)
CP-violation in EF
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Role of scale in physical problems

Some distribution

F
of electric charges Near ar

observer observer

L r
+—>
R
Near observer, L~R, needs to know the position of every charge to describe electric field in her proximity
_)
| | | g d-T Oy

Far observer, r >> R, can instead use multipole expansion: V(r) = — + 3 + : + ...

r r r

~1/r ~R/r*2 ~RA2/rA3

Far observer is able to describe electric field in his vicinity using just a few parameters:
the total electric charge, eventually the dipole moment, ....

Higher order terms in the multipole expansion are suppressed by powers of the small parameter (R/r).
One can truncate the expansion at some order depending on the value of (R/r) and experimental precision

Far observer, like Moliere's Mr. Jourdain,
discovers that he has been using EFT all his life



Scale 1n microscopic problems
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X-ray photons see Lower-energy photons
the atomic structure see atoms as neutral objects
and scatter on which are basically transparent

the orbiting electrons

(that’s how the universe becomes transparent to photons right after recombination)



Scale i1n quantum field theory

Consider a theory of a light particle ¢
interacting with a heavy particle H

Heavy particle H propagator in coordinate space:

At small distance scales, |x1-x2| << 1/mH,
the heavy particle H propagates.
Force acting between light particles ¢

1 1
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| X1 — x| At

= AFAr« 1
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At large distance scales, |x1-x2| >> 1/mp,
propagation of the heavy particle H suppressed.
Interaction looks like a delta function potential

1
my ~ AE > ~ > AFEAr>1
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Scale 1n gquantum field theory

Consider a theory of a light particle ¢
interacting with a heavy particle H

Heavy particle H propagator in momentum space:

M~

At large momentum scales, p2 >> mu2,
we see propagation of the heavy particle H.
Force acting between light particles ¢

M~
My

At small momentum scales, p? << mu?,
propagation of the heavy particle H
effectively leads to a contact interaction
between light particles ¢



Scale 1in particle theory

® Processes probing distance scales >> 1/my, equivalently energies scales << my,
cannot resolve the propagation of H

® Then, intuitively, exchange of heavy particle H between light particles ¢ should be
indistinguishable from a contact interaction of ¢

® In other words, the effective theory describing ¢ interactions should be well
approximated by a local Lagrangian, that is, by a polynomial in ¢ and its derivatives

This is the generic way how the effective theory description arise in particle physics,
which will be repeated in all the examples that follow



Effective field theory

How to build an EFT

£ )

Starting with a given theory
(effective or fundamental)
we integrate out degrees of freedom
heavier than some prescribed mass scale

Starting with a set of particles
we build the Lagrangian
describing all their possible interactions
obeying a prescribed set of symmetries
and organised in a consistent expansion



Intfermezzo: Dimensional analysis

® Effective Lagrangians by construction must contain infinite number of
terms. Therefore any useful EFT comes with a set of power counting
rules which allow one to organize the Lagrangian in a consistent
expansion and single out the most relevant terms

® Relativistic effective theories are obtained by integrating out heavy
fields H with mass of order A, and the inverse of the latter provides a
natural expansion parameter to organize the effective Lagrangian.

® The effective Lagrangian is then organized according to canonical
dimensions of its interactions terms, where the powers of the mass scale
multiplying each term are identified with A. The observables computed
fare then expanded in E/A where E is the typical energy scale of the
experiment

® Warning: different power counting rules may apply to non-relativistic
theories, or relativistic systems with one heavy component (such as e.g.
B-mesons), or to theories with non-linearly realized symmetry. These
cases will be discussed later.



Dimensional analysis
To isolate UV and IR limits,

consider rescaling of

spacetime coordinates

£—0 is zooming in on small distances (UV limit)
t—o00 is zooming in on large distances (IR limit)

Since path integral is dominated by kinetic terms

to easily compare the original and rescaled actions  Ol%/% M §_1¢, fCE

it is convenient normalize the kinetic terms canonically
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Quartic coupling is marginal operator: it is (approximately) the same
in UV and in IR

Higher dimensional interactions (for d+n>4) are irrelevant operators: they get
less important in IR

| Power coun’rlng in relativistic EFT, determining ’rhe |mpor’rance oF various
| m’rerachons can be organized based on canonlcal d|men5|on of m’rerac’rlons




Dimensional analysis cheat sheet

Relativistic field theory

. 1 ’ -
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Euler-Heisenberg EFT

Rules of the game

¢ Quantum Mechanics + Poincaré invariance = relativistic Quantum Field Theory

e Degrees of freedom: a massless spin-1 photon with 2 polarizations
(neutrinos are ignored in this discussion)

e U(1) gauge invariance
e Validity regime up for photon energies smaller than the cutoff scale A
® No other mass scale in the EFT except for A

Starting from these principles, we will build an EFT for the photon in systematic expansion in 1/A

I I 13 1 1 1
oft = Zp=4+ =L p=s T X

E.g. 2-to-2 photon scattering amplitude calculated from this Lagrangian must have form
E, E’ E;) E;
M(yy — = ay+ a4— + d)— + a3— + a + .
vy =) =ap+a—=+a,-5 + a3 4/\

For Ey << A each consecutive term is more suppressed, therefore the expansion makes sense
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Illustration #1

Euler-Heisenberg EFT

We will start with a bottom up approach, and then connect it to the top down approach



Euler-Heisenberg EFT

Consider effective theory for photons propagating in vacuum with Ey << 2me= 1 MeV

e At these energies all charged particles are integrated out, hence the effective
Lagrangian must be a function of only the photon field A,

® Photons are massless, so the only explicit mass scale in this construction is the EFT
cutoff scale A

e Gauge and Lorentz invariance requires the effective Lagrangian to be a function of
the field strength F,v and its derivatives

3 Fo=0,A —0,A,
Sfeff=§/”(F F ()M,A> o

1222 1 2 F

Ty wapl ap

We will build the effective Lagrangian as an expansion in 1/A

1 1

Here D denotes the canonical dimension of each term
(no odd dimensions because [Fuv]=2, and derivatives must always come in pairs)



Euler-Heisenberg EFT

| |

F, = F/m =0  No possible invariants thus £ _, = 0

~

One invariant I, I, F,F,=F,F,

r /JI/F uw  is a total derivative

1 0,0,F,, =0
Y o =——=—F F the numerical coefficient is pure convention,
D=4 4 HH except for the sign, which is required
to avoid ghost instability
Again, no non-trivial invariants! Hence gD=6 —

FFF =0=FF F =...

pt vpt pu pt vpt pu
F,0,F,,05F,3=0
— _ : 2c
Zp-¢ =cF,,[1F,, canbe eliminated by the change of variables A, > A, + 2 A,

Non-trivial interactions between photons can arise only at order 1/ A4 in the EFT!



Euler-Heisen?erg EFT

|
geff= _ZFMUFIMU : A43D=8+

The most general non-redundant Lagrangian at D=8 is

Lagrangian’s interactions are called
operators in this context

e

3D=8 — CI(F F U)Z + CZ(F,M F )2 + C3(F F )(FaﬁFaﬁ)

uvt u vt UU uvt uv

~ 1 /7

The Lagrangian’s free parameters are called
the Wilson coefficient in this context

Other possible structures
can be shown to be redundant, that is 1 , 1 -
they can be eliminated or expressed eg. Fulaltuplp = Fu b+ 2 F)
by the three above

The high-school version of the same Lagrangian:

Fpog =4c,(E* = B2) +16¢,(EB) +8¢;(E*— B?)(EB)



N Euler-Heisenberg EFT

L s/
1 1 ) . BT
Zew == 7Fulu+ F{(:I(FWFW) + ) (F F ) + e (F F ) (FopFop) t + .

This Lagrangian describes the effective theory of light at low energies
(UV, visible, IR, microwaves, radio) at the leading order beyond the Maxwell approximation

This is the effective theory underlying the physics of lightsabers

In its validity regime, it is also appropriate to describe the entire textbook electrodynamics,
plus vacuum birefringence, photon-photon scattering at low energies, and more



Euler-Heisenberg EFT

1 .
geff - = ZF,LH/F,W/ T _{Cl( Uv ,uv)z + C2( Uv ,uy)z T C3( Uv ,m/ aﬂFaﬁ)} T ...

This Lagrangian defines a completely healthy and consistent quantum field theory
with quartic (and possibly higher-point) self-interactions between photons.

H Ha
32ic,
D P2 = (p{hp;l _plpznﬂlﬂz) (p3ﬂ4p£t3 _p3p4;7/43ﬂ4) + Qe 3)+2 o4
32icy 32ic,
Pa s A () )
H H3

Scattering amplitudes can be calculated in a systematic expansionin 1/ A4 . E.qg.

(:2 + i3 2
MytTytytyt) =8 o s?+12+u
[ ] s =(p, +P2)2
L c1+ ¢ _ ) Note that a non-zero c3
My yTyTyT) =8 A 52 r= P+ ps) violates parity!
u=(p +P4)2

Ci —C lC
My yyyT) = 8—>

[s + t2+ uz]



Euler-Heisenberg EFT

1

1 _ _
Lo == 7FuFu+ F{cl(FM,,FW)2 + ) (F F ) + 3(F L F ) (FoF ) b +

This is a healthy QFT, so we can calculate loop corrections

H4
1 ¢C;
J
M~ E°+ ...
3 € A8 \
H3 /
dim. reg. e.g. s* or s?t2

Dimensional analysis shows that we cannot absorb this divergence
into the coefficients ci in the Lagrangian

Instead we have to add new counterterms to the Lagragnian:

AL =d0,F, 0F, ) +...

a’ uv-a” uv

This EFT is not renormalizable in the usual sense of this word,
because you need an infinite number of counterterms to cancel all loop divergences in the theory

But it renormalizable in another sense: if at given order you include all terms allowed by
symmetries, then all divergences can be canceled at this order



Euler-Heisenberg EFT

1 1 ~ _
Lo = — ZFWFW + F{cl(FWFW)2 + &y(F F)" + 3(F P ) FoF o) ) +

Scattered comments:

® This is the effective theory of light at low energies (UV, visible, IR, microwaves, radio)
at the leading non-trivial order

® The quartic photon interaction terms in this EFT lead to non-linear field equations for
the electromagnetic field. Thus, electrodynamics is really non-linear, and the
superposition principle they taught you in school is not exactly true! Of course, the
effect is tiny in typical engineer problems, cause they deal with energies far below A

® One potentially observable effect of the D=8 fterms is the so-called vacuum
birefringence, that is rotation of light polarization propagating in vacuum in strong
magnetic field. This effect was possibly observed in 2016 in a neutron star light.

® Another potentially observable effect is light-by-light scattering. This has been
routinely observed in colliders, however at higher energies where this EFT is no longer
valid.



UV completion of Euler-Heisenberg EFT

1

1 ~ _
Lo = — ZFWFW + F{cl(FWFW)2 + &y(F F)" + 3(F P ) FoF o) ) +

Suppose, Jedi measure experimentally the coefficients c; /A4
but they do not have means to reach the energy scale A

Can they deduce what is the fundamental theory underlying this EFT ?

The answer is no in general. However they can do the following exercise:

1. Hypothesize a theory for which, below a certain mass scale A, the only degrees of
freedom are those of the photon

2. Perform the matching between the UV theory and the EFT, that is integrate out all
particles heavier than A and calculate ci in terms of the parameters of the UV theory

3. Verify if the predicted pattern of ci agrees with the one measured experimentally



UV completion of Euler-Heisenberg EFT

1 1 - _
— 2 2
Zew == 7Fulu+ F{cl(FWFW) + ) (F F ) + e (F F ) (FopFop) t + .
Ci ~ 62 If this Wilson coefficient is generated at tree level
64
; ~ if this Wilson coefficient is generated at 1-loop level
1672

g Thus, in QED
H Doesn’t exist 4 o
}—- in QED ! C; e 04
% — N —_—

A*  16x2m* m?

It
\L Does exist Moreover, ¢3=0 in QED,

in QED ! due to parity conservation



UV completion of Euler-Heisenberg EFT

QED UV completion
Lyy D Wyt — mypy + eA pyty

In this example, the UV completion of our effectlve theory is a renormalizable theory,
which could in principle be valid to very high energy scales

L my

 § L 4 A +reversed
e e fermion line
\J\]'\- * J\J’\ <
Y ooy ¥
’ 2, 2 2 6 —Cy,+iC
M QED(7+7’+7’+7’+) = = 15m? [S Tt u ] + O(m, ) %EFT(7+7’+7’+7+) _ 8 A2 3 [S L2 uz]
— - 1o _ _ 1+ 6
az — - — N Cl - C2 lC3 )
MoppY Y YY) =— TS [S2 + 12+ uz] + @(me_6) Mepr(y vy 7)) =38 A4 [s +2+u ]
Thus, integrating out the electron at one-loop level yields:
Cl a2 62 7a2 C3 O

AT 90md A* 360mE A4



UV completion of Euler-Heisenberg EFT

Y
ALP UV completion 4
1 N m> , a S
Luv D E(GMa) > a” + ]7 gFWFW + gFWFW
a
Integrating out the axion at tree-level:
2 ~7) ~
1 8 ¢ 8 3 88

) ) -
2
A* 2f2mZ A+ 2famZ A+ famg
Note that

A =/,

In this example, the usual power counting, A~m,, is disrupted, because
the UV completion of an effective theory is itself an effective theory
and contains other mass parameters than m,




UV completion of Euler-Heisenberg EFT

1

1 - .
Lo == 7FuFu+ F{CI(FWFW)Z + ) (F F ) + e (F F ) (FopFop) t + .

® In the absence of new physics, the ordinary QED is the UV completion of this EFT, in which case
the cutoff A can be identified with 2m.. However, in the presence of light axions or light milli-
charged particles, this may no longer be the case.

® However, I'm not aware of a systematic experimental measurement of ci, cz, ¢3. A future such
measurement will be a non-trivial result, as some unknown light particles could in principle
contribute to it, along with the electron and other SM charged particles



Euler-Heisenberg EFT

Summary and lessons learned

® Symmetries of a low-energy system often determine the structure of the effective
theory at leading orders, up to a few unknown numerical parameters

® The EFT Lagrangian can be used for perturbative calculations of low-energy scattering
amplitudes. But it is also a useful fool to work out subtle effects of classical field
configurations

® A difference between this EFT and a renormalizable QFT is that counterterms of
order 1/An, also with n>4, are generated at loop level, thus these higher-order terms
have to be added to the Lagrangian if we require precision beyond the 1/A% order

® Precision measurement of the parameters of the Euler-Heisenberg EFT would give us
information about its UV completion, which could possibly lead to surprises
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Illustration #2

SM EFT
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Rules of the game

e Quantum Mechanics + Poincaré invariance = relativistic Quantum Field Theory

e Degrees of freedom: those of the SM (gluons, photon, W, Z, 6 quarks, 3 charged
leptons, 3 neutrinos, Higgs doublet)

e SU(3)xSU(2)xU(1) gauge invariance
e Spontaneous breaking of SU(3)xSU(2)xU(1) down to SU(3)xU(1)
e Validity regime up to energies smaller than the cutoff scale A

® No other mass scale in the EFT except for A and Higgs mass parameter pn

Starting from these principles, we will build an EFT in systematic expansion in 1/A

1 1 1 1
— A2 . _ - -
L= NLpo + AL py+ Lyt —Lps + = Lpos+ 5L + -5 Loy + o

For E << A each consecutive term is more suppressed, therefore the expansion makes sense



g . HT H Unsolved mystery why the suppression by ,ué/ Az,

D=2 — A2 which is called the hierarchy problem
Zp-3 =0
4 V., VK 85 0 G2 G

D=4 — j72% 39 UV UU Vi, =0,V = 0,V + 8f VIV

71'
VeB W',G*
+ Z lf}/ D ﬂf D,f=0,f—ig,GiTf - ing;;%i f—igyB,Yf
feq.u,d,le

—(aY,gH + dY,H g +eY,H'l+h.c.)
+D,H'D"H — A(H'H)*

L =NLpr + N L,

19 physical parameters, most of them measured with a good precision, 6 very well constrained



SMEFT i
i

The dominant paradigm is that everything is EFT, “glg
and so the SM is a part of an EFT called SMEFT -

SMEFT obeys the same fundamental principles as the SM,
except that we don’t truncate the expansion at D=4

1 1 1 1
A =7 —L s L e L 4
SMEFT SM T L p=s T 5L D=6 T FL D=7 T 7L pg T
Known SM
Lagrangian Higher-dimensional

SU(3)c x SU(2). x U(1)vinvariant
interactions added to the SM

At each order we should include a complete and non-redundant set of operators
eventually subject to some additional global symmetries




SMEFT at dimension-5

1 1 1
ZsMEFT = ZLsm T | Z pg A33D=7 | o D=

0
H

i v’ ) <V/ﬁ>
—LH)(LH)+h.c. > c¢c.—vuv.+h.c.
A ¢ J ) A e (v,->

L — o

® At dimension 5, the only operators one can construct are the so-called Weinberg

operators, which break the lepton number

® After electroweak symmetry breaking they give rise to Majorana mass terms for
the SM (left-handed) neutrinos

® Neutrino oscillation experiments strongly suggest that these operators are present
(unless neutrino masses are of the Dirac type)

This is a huge success of SMEFT: corrections to the SM Lagrangian predicted
at the leading order in the EFT expansion, are indeed observed in experiment!



SMEFT at dimension-5

V2

Neutrino masses or most likely in the 0.01 eV - 0.1 eV ballpark
(while the lightest neutrino may even be massless)

It follows that A /cj; ~ 101° GeV

One problem now:

1 1 1
ZsmerT = ZLsm T Xg D=5 1 Z p-¢

m=
A

- Vv

e

LAY

Normal ==V

M

m=t
3 T F

atmospheric
~2x10-3%eV?

52| ———

X

L

solar~7x 10 3¢V?2
.

7

Inverted

o —
solar~7x10 JeV?

atmospheric
~2x1073eV?

—-In.

p2 7 b0t 53T

1

Loyt -

Dimension-5 terms affect only neutrino physics, no other effects are observable

If A ~ 1015 GeV then most dimension-6 and higher terms are too suppressed to be observable

If this is really the correct expansion, then we will never see any other effects

of higher-dimensional operators, except possibly of baryon-number violating ones :/
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SMEFT at dimension-5

1 1 1 1

3SMEFT=3SM+X°CZD=5 | 3D=6+F$D=7+F°CZD=8+“'

A2

If this is really the correct expansion, then we will never see any other effects
of higher-dimensional operators, except possibly of baryon-number violating ones :/

Another possibility, however is that A is much lower, but the UV sector (heavy neutrinos)
couples very weekly to the SM degrees of freedom

Moreover, it is possible that there is more than one mass scale of new physics

Dimension-5 interactions are special because they violate lepton number L.
If we assume that the mass scale of new particles with L-violating interactions is Ay,
and there is also L-conserving new physics at the scale A << AL, then the expansion is

1 1 1 1

Z'SMEFT = Z'sMm A Zp=s A231)=6 | A331):7 A4
L L

gD=8

This is our working assumption, not because it is strongly motivated by data
but because the alternative is too depressing



SMEFT at dimension-6

1
Z smEpT = ZLsm A

If A << A_, leading non-SM effects in collider and precision physics may come
from dimension-6 operators

There is 2499 of baryon-number-conserving D=6 operators,
and another handful of B-violating operators



1

Z smepT = ZLsm A Z ps

VK A K AL

Bosonic CP-even
Oy (HTH)3
(HTHYO(H'H)

HD,H|

H'HGY,G,

HTHW! W/,

H'H B, B,
H'o'HW/, By,
IR, Wi, WE,

Oc f achszngfw

\/

HYH W, W,
H'H B,,B,,
H'o'"HW}!,B,

ik J Tk
€ WWW,/,)WW

HYH Go,G%,

.
.

fabcézy Gb el

vp T p

1

Lps+ ...

Yukawa
(01,11 | HUHeSHT,
. . [Q}H]IJ H'HujH'q,
A [O4ylrs | H'HdjH'q;
Vertex Dipole
Ols | itroutsH DL Olylis | esowH et W,
091y | ilyoic, 0 Hio D H Ol s | 0w B,
Oy | ie5o,eqH D H 01l | uSowTeHYgs G8,
Oy | im0 HID,H (Ol | ufouHlo'ay W,
[Oﬁff,]u itiztf"@QJHTffiﬁ;H O gl | wSouwH s B
Omdis | o, aqH DLH Okl | dsoToH g, G2,
Ondis | idSo,dsHID,H Ollis | dsoHlaiq, Wi,
Omudl1s | o, d5HI D, H [OLB]IJ d$ouH'qy By

Table 2.3: Two-fermion D=6 operators in the Warsaw basis. The flavor indices
denoted by I, J. For complex operators (Op,q and all Yukawa and dipole operat.
the corresponding complex conjugate operator is implicitly included.

. (RR)(RR) (LL)(RR)
"” O | (e 0,e) (e 0,e) On|  (To,0)(c0,e)
:‘ Ouwu | n(u‘o,a®)(uo,uc) O (t,.0)(uo,u)
Oda | n(d°o,d”)(do,de) Ou | (lo,0)(d0,d")
Ocy (e°0,e%)(uo,u) Oeq (€°0,,€°)(q5,q)
Oca | (c°0,8)(d"0,ud") Oqu | (40,9)(u0,uc)
Oui | (ufo,u)(do,d") Ofu | (00, Tq)(u0, Tu)
O | (o, Tw)(d0, Td°) O | (70u)(d°0,d°)
O | (G0,T"q)(d°0, T d")

(LL)(LL) (LR)(LR)
Ou | n(lo,l)(lo,t) Oguqd (ueq?)eu(dq")
% Oy | 1(76,9)(75,9) Ol | (T ) e (dTq")
“‘ Oy | M35,.0°9)(35,.0°q) Ovequ (e°t)ejn(uqr)
" O | (5,0)(q0,0) Ohegu | (€5, 7)1 (T )
S 0,| e Oun |  (e)(dq)

Table 2.%  Four-fermion D=6 operators in the Warsaw basis. Flavor indices a
suppressed,here to reduce the clutter. The factor 7 is equal to 1/2 when all flav
indices are egual (e.g. in [Oceli111), and n = 1 otherwise. For each complex operat
the complex ognjugate should be included.

« Ogug =[d°u?)(QF)
Vg =(qq) (L")
Oyeq —(qq)(¢f)
Odun =(d%uf){u"e’)
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Illustration #3

Weak EFT



Muon decay in the SM

In the SM, weak interactions are mediated by W and Z bosons: © W ¢
p L
—vy P
gL _ B + l > yp L
Lm D — [I/Lg/peL + I/ﬂ}/p,uL] Wy +h.c. V2
2 Ve
In this theory, calculate muon decay y
. 8
W, l_LprL
V2
Yy
%4 m,

Tree-level amplitude:

2
_ 8L - 1 _
g=p, —k u(p) and v(p) are spinor wave functions

for particles and anti-particles



Muon decay in the SM
U

Tree-level amplitude:

gr 1
M = _u(k2)pr Lu(pl) u(k4)7pP 1 V(k3) kN -
q* — mg q=p;—k ¢
But kinematics of muon decay puts the constraint q2 S m/f < m%v

For all practical purpose one can thus approximate

8L
mW

M= —

—ii(ky)y,Pou(pyii(ky)y,PLy(ks) + O Imi)

This approximate amplitude can be equally well obtained from the effective Lagrangian

2

geﬂ? B ( }/pluL)(eLypyL) + h c. ¥
ZmW

Ly, Py, P



EFT below the electroweak scale

Many interesting particle physics processes, like muon decay, meson
decays and oscillations, beta transitions, neutrino scattering on nuclei,
EDMSs, etc., occur with characteristic energy far below the electroweak
scale (E << 100 GeV)

At these energies W, Z, and also Higgs and top do not propagate, and
can be integrated out from the theory, in order to simplify it but also to

Improve its convergence

The weak and Higgs interactions mediated by those force carriers in
the SMEFT are mimicked in the WEFT by contact interactions between
light degrees of freedom: leptons, quarks, etc.

The resulting EFT is called here the Weak EFT, or the WEFT in short
(also names LEFT and WET exist in the literature)
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Rules of the game

e Quantum Mechanics + Poincaré invariance = relativistic Quantum Field Theory
e Degrees of freedom: gluons, photon, 5 quarks, 3 charged leptons, 3 neutrinos
e SU(3)xU(1)em gauge invariance

e Validity regime up to energies smaller than the cutoff scale A = mw

® No other mass scale in the EFT except for A and particles’ masses

Starting from these principles, we will build an EFT in systematic expansion in 1/A

1 1 1 1

For E << A each consecutive term is more suppressed, therefore the expansion makes sense



We focus

on a small

subset of
those

WEFT

vv + h.c. (vv)X + h.c. (LR)X + h.c. X3
O, |(v,Cvir)  Ouy| (v, Co" vin)Fuy Oey | €Lpo* err Fuy  Og|fAPCGHYGRPGSH
/ / Ouy | tLpo™ upy Fu Oé fABCéﬁVGEPGg“
D=3 D_5 Od7 CZLPUMVdRT F;u/ \ D=6
> Ouc ﬂLpU‘“’TAuRT Gﬁ‘y
OdG CZLPUWJTAdRT Gﬁy
(LL)(LL) (LL)(RR) (LR)(LR) + h.c.
OV-LL (TLpY*vee)(PLsyuVit) OV.Li (TLpY*vir)(€RsYu€RE) O3, RR (érperr)(€Lsert)
Ok - (eLpy*err)(€LsyuerLt) Ok h (erpy*err)(€rsVueRe) OS5, R (eLperr)(ULsupt)
OyéLL (VLpYHvir)(e sVueLt) Oz‘//ﬁLR (VLpyHvee) ( RS'VuuRt) OzﬁRR (eLpo™ery)(u Lsa/u/uRt)
oy.LL (TLpY*vie)(ULsyutiLe) ov.LE (VLpY*ver)(drsYudrt) O RR (erperr)(drsdre)
OV’LL (DLp’YMVLr)( Ls’Yust) OX{LLR (_Lp'Y'ueLr)( Rs’}/,uuRt) OzleR (eL O—MVGRT)(_ O-pl,l/th)
OVEL | (v ers)(TrsYutrs) OV Erpr*ers)(drsyudne) OXEE 1 (Drpers)(drsury)
outr (epy"err)(drsyudre) Oyt (urpy*urr)(RsVueRe) Oias | (Lpo* err) (dLsoputne)
OVLl | (Frpyers)(drsyure) +he.  Opt" (dLpy*dre) (Ersyper) OSVRR| (tppur,)(Ursun)
OwEE | (appy ury)(GLsyuure) Oyl (TLpy*enr)(drsVuure) + hec. On B (upp T4 up, ) (arsT upe)
oyt (drpy*dry)(drsyudrt) Oy LLE (@rpy*urr)(URrsYuURe) OS5I ER (trpurr)(drsdpe)
oV LEE (arpy ury)(drsy.die) OVSLE|  (up,y*Tur,)(trsY, T ur:) 05 RE (irp T ur,)(drsTdRy)
Oy SEt (@rpy" T ure)(drsy, T dry) oy (arpy*urr)(drsYudre) Oaq™" (dLpdrr)(dLsdns)
(ER) (RR) OVS,LR (ﬂLpr'uTAuL’r’)( RS’)/;LTAth) OS&RR (deTAdRT)( _LST th>
OVLLR (JLp’V'udLr)( s’)/,uuRt) OiédljR ('l_LLder)(d_LsuRt)
OV Rl (ErpY"err)(ERsYueRt) Vs LR B s nR B
Od > (denyTAdLT)( Rs’)/uT uRt) @ Sd (ﬂLpT dRr)(dLsT uRt)
Oy1E (€rpY"err)(URsYuURE) “ B et
oyt (drpy"drr)(drsyudre) o
OVRE (erpY"err)(drsVudrs) Ve Ln ) ., (LR)(RL) + h.c.
) %
OV’RR ( Rp’YHuRT)( RslyuuRt) OV1 LR (de’Y g dLT)(dRS,YMT th) OS’RL (éLpeRT)(ﬂRsuLt)
V,RR " Oddu (ﬁLp'Y“dLr)(dRs%“Rt) +h.c. S,RL _ 7 .
Ouq (drpy"drr)(dRsVudRe) Ve LR B O, (erperr)(drsdrt) Jenkins et al
V1,RR O i Ly TAd Ly ) (drsyu T ure) + hoc. S.RL |, - = .
Ou ’ ( Rp'YMURr)(dRs'VMth) Oyedu (VLPGRT)(dRS’UJLt) [3|’XIV.1709.04486]




Charged current interactions in SM

Consider low-energy interactions between light quarks and leptons

Starting point: gSM D — W;‘( — m%V)Wp_ + %{ [DL;/peL -+ VudﬂL}/de] Wp+ +h.c. }

SM CKM element

_ 8L |- _
e.o.m: —( —m‘%,)Wp T [vLypeL+VuduLyde] = ()

_ 8 -1 7 =
Wy = 7L2( — )~ Dry,ep + Vil y,dr | & — \/z;z
W

Leading effective 4-fermion interactions:

glz, — 7 — — 2Vud — _
L wWepr D — 22 [eL}’pVL T VuddLVpuL] [VLVpeL T Vud”LYde] D 2 (eLVpVL)(“LVde)
W

D1vper + Va4 |

solution:

2m
W ~ 246 GeV

\Y
u 8L
CX&
d C _
I/e
e
u
_ e
e




Charged current interactions in SMEFT and WEFT

Three new elements appear in SMEFT regarding the charged currents:

1. Coupling strength of W to quarks and leptons can be modified compared to the SM
2. W boson can now couple to right-handed quarks as well

3. Charged currents are mediated not only by W, but also by new contact interactions

ChO

Zswerr O —— H'6“D,H(Q0,0) 4 L " —=H'6“D,H(Lo"y,L)

After Higgs gets a VEV

2

2
C HQV

8L CyrV

< D —
SMEFT \/5

Integrating out W boson

8L

NG

1 + 1 +

] Wiirye +V,,

] Wriy,d, +h.c.

2

2V, CroV

v2

" d v, Same effective interaction
d ; as in WEFT derived from SM
¥ ¢ but with a different Wilson coefficient
u
_ e
e

2

2 1 +

1+

ZwerT O — (ery v )iy,dy) =

v2
e 1+ (CHL + CHQ) > ] (eLyva)(uLyde)



Charged current interactions in SMEFT and WEFT

Three new elements appear in SMEFT regarding the charged currents:

1. Coupling strength of W to quarks and leptons can be modified compared to the SM
2. W boson can now couple to right-handed quarks as well

3. Charged currents are mediated not only by W, but also by new contact interactions

CHud _
QCZSMEFT :) A_L;HTDﬂH(uR}/ﬂdR)

After Higgs gets a VEV

)
8L CarV

ZLsmerr 2 — |1 +

CrrgV
] Wiiry,e + Hud ] W riigy,dr +h.c.

i

Integrating out W boson

2

Z WEFT O )

CHLV CH ud \ 2 Vud CHud \

2 2 2
1+ A2 A2 (eLVpVL)(uR?’de) T [ v Az] ey v )Ry, dr)

u
d _
Ve
W~

Different effective interaction
than in WEFT derived from SM




Charged current interactions in SMEFT and WEFT

Three new elements appear in SMEFT regarding the charged currents:

1. Coupling strength of W to quarks and leptons can be modified compared to the SM
2. W boson can now couple to right-handed quarks as well

3. Charged currents are mediated not only by W, but also by new contact interactions

(3) 3)

CLeQu
Z SMEFT 2 —(QU 7,Q) (Lo, L) + —=—(8o,,L)(iigo,, Q)
CLeQu CLedQ
(eRL)(uRQ) (LeR)(dRQ)
2V [ iV ) cﬁ)guvz
< WEFT 2 2 (eLVpVL)(ML?’de) + A2 (ég0,, v )(igo,,d;)
CLeQu 2 CLedQV2

A2 (egup)iigd;) +

First terms is same effective interaction
as in WEFT derived from SM
but with a different Wilson coefficient
The last 3 terms are
Different effective interaction

than in WEFT derived from SM

(DLeR)(JR”L) }



Charged current in WEFT

To summarise, starting from the SMEFT and integrating out W in the quark-lepton
charged current sector, we arrived at the following interactions

CKM element
Left-handed
\ neutrino
2V _ o
ZweFr 2 — 2 (1+€L) ery, vy - upy'dy V-A
Normalization scale, 1
set by Fermi constant +€Tzé ROV - upc"td; Tensor
V= ! ~ 246 GeV
\VV26r l_ id
+€SEeRVL Rz Scalar
1 _ _
Pseudo-scalar ~Ep5CRL uysd ¢ +h.c.

WEFT leads to a simpler description
at low energies:
number of parameters reduced
wrt to the SMEFT



Translation from low-to-high energy EFT

The EFT below the weak scale (WEFT)
can be matched to the EFT above the weak scale (SMEFT)

d — -
- { (1+€L) eL}/ﬂI/L°uL)/”dL

Zsmerr 2 ol 0D, H(Q0%,0) + cy H'6“D,H(Loy,L)
+cpy,gH' D, Hiigy,d)
+c£3Q)(Q6ayﬂQ)(ZaayﬂL) + cﬁbu(éR%L)(aR%Q)

+Creou(€rL)(UgQ) + cLedQ(l_,eR)(czRQ)

+epegy by - igytdg

1

iy oM
+€T4eR0WyL upcttd;

+eg—epy; - id
S5 “RPL
1
_GPEeRVL'uySd} +h.c.

At the scale mw, WEFT parameters €x map to dimension-6 operators in the SMEFT
2

€ = [CHL+CHQ—C£2]%+ —

2
1 Vv more subtle...

€Ep = C
R Hud
2V, Ml A2

1 V2
€g= — [V Crooy T CF ]—
S 2Vud ud*~ LeQu LedQ A2

V2

er = =205, 7
1 v?
€p= — 2V, [VudCLeQu — C;jedQ] E




100 GeV  V,9,W,Z,vi,e,l, T+ U, d,s,c,b,t+h

5 GeV Y,9,Vi,6,, T + U, d! S, G, b

2 GeV Y,9,Vi,e, I, T + U, ds S,C

=3 e - = —— %
= = = = W"‘)"‘" —— e = < -
= — =—. - - et e 2 WP, -

— s

1 GeV V,vi,e,l + hadrons

100 MeV V,vi,e,l + pions and kaons



100 GeV  V,9,W,Z,vi,e,l, T+ U, d,s,c,b,t+h

5 GeV Y,9,Vi,6,, T + U, d! S, G, b

2 GeV Y,9,Vi,e, I, T + U, ds S,C

=3 e - = —— %
= = = = W"‘)"‘" —— e = < -
= — =—. - - et e 2 WP, -

— s

1 GeV V,vi,e,l + hadrons

100 MeV V,vi,e,l + pions and kaons



Illustration #4

Fermi EFT



From WEFT to Ferm1 EFT

At a scale of order 2 GeV the quarks of WEFT becomes
strongly interacting

Below that scale, the useful degrees of freedom are no
longer quarks but hadrons: baryons and mesons

We have to switch our EFT description to take into account
the new degrees of freedom (and the lack of quarks)

| focus on a special sector of the that EFT, which describes
beta transitions involving nucleons (protons and neutrons)
and leptons

| call this the Fermi EFT



From WEFT to Ferm1 EFT

Let us take only SM-derived interactions for the start:

A )
LWERT 2 2 (eLypyL)(uLyde) +h.c.

This interaction leads to beta decays, in particular to the neutron decay

d — ue v

., = nh—pevr,

Amplitude for the latter process is

M(n — pev,) = — 2\‘//;61 (pe v, | (ry v )iy,d) | n >
= = o5, | @10 > (p Gz I > .
= — 2:2””[ (@(p)y,Prv(p)){p | Gigy,dy)|n > T
= —%(ﬁ(pe)prLV(py)) { {p|ay,d)|n>—(p|(ay,ysd)|n> }

where u(p), v(p) are the usual spinor wave functions for particle and antiparticles




Fermi EFT

%
M(n — pe™p,) = —V—”f(ﬁ(pe)prLV(py)) { (p|(ay,d)|n>—(p|Qy,ysd)|n> }

Due to strong QCD interaction, the quark matrix element cannot be calculated perturbatively

However, with the input from dimensional analysis and QCD (approximate) symmetries
they can be reduced to a few unknowns,
which can be subsequently calculated on the lattice or using phenomenological models

Lorentz invariance + Parity of QCD implies

~ N q=DP,— pp
grv@® 84(q°)
0,4 +

(plGy,d)|n>=i(p,)|gyqDy, + q,| u(p,)

" 2m

_ _ gralg> 8p(g?)
(p| Gy, rsd)|n> = i(p,)|gaqy, + T;m 0,,9" +

n

n

Qp] s u(pn)

2m,



M(n — pe v, = —

Fermi EFT

V2 (u(pe)prLV(py ) {(p | (l’_t}/pd) | n> — (p | (l/_t}/p}/Sd) | n > }

For beta decay processes, and especially for neutron decay, recoil is much smaller than
nucleon mass. Therefore at the leading order one can approximate

(p | (ity,d)

n > = gyi(pyy,ulp,) + 0(q)
n> = guu(p,)y,rsu(p,) + 0(q)

q pn_pp

where gv=gv(0) and ga=ga(0) are now numbers, called the vector and axial charges

Furthermore, in the isospin symmetric gv=1, because the quark current is the isospin current
One can prove that departures of gvfrom one are second order in isospin breaking, thus tiny

All in all

M(n — pe v, =

Vi
T2 (“(pe)?’pp LV(pl/)> {l/_t(pp)ypu(pn) — 84U(Py)Y,ysu(p,) + @(6])}



Fermi EFT

%
M(n — pep,) = —V—”f(ﬁ(pe)prLV(py)) {b‘t(pp)ypu(pn) — g4li(p,)7,Ysu(p,) + @(q)}

2V . )
LWERT 2D > (eLypve)(uLyde) +h.c.
\

* Matching
q

VM — — —
gFermi D d (eL}/pI/e){ (p}/pn) — gA(p}/p}/Sn) } + h.c. —+ O (-)

V2 m,

as our n—p e v amplitude can be obtained from this effective Lagrangian

The non-perturbative parameter ga appearing in this matching
has to be calculated on the lattice or measured in experiment

Lattice Experiment

g, =1271+0.013 g4 = 1.27536 £ 0.00041



Fermi EFT

Now let’s take into account At nucleon scale, we then get
non-SM interactions in WEFT more general set of interactions
2V, i i P
ZLWEFT 2 — Vzd{ (1+€L) eVl - upytdy Z Fermi 2 —CV]?)/ n eL}/,uUL
_I_
+eg egy, by - Ugy"dg B CA priysn eLyﬂyL
+
L — _lc+
1 _
—ep—éRvL-L_t}/Sd} +h.c. +Copysn égyy +h.c.
2 Short-distance

i - T.D. Lee and C.N. Yang (1956
radiative corrections g )

Seng et al
1+AY 1+ +e AY = 0.02467(22) 1507 1019
Dictionary is L+ €r) 1807.10197
_ Flag’19
obtained along ., _ L+ AL (1 + ¢, — ep) 12510033 - ak= 4079 x 107
the same lines A= v2 R\'TEL™ER)  8A Hayen
as in SM case 1% 2010.07262

gs=1.02£0.10, g7 =0.989+0.034 G otaeta
1806.09006

Gonzalez-Alonso et al
= 349 +
gp=349£9 1803.08732




Down the rabbit hole

Zz Fermi D — C+p yn eLy,uVL

—Cipriysney,v

_Ctpn ey, This is a relativistic Lagrangian,

and may not be most convenient to use

——C} potn ego,u; for non-relativistic processes
2

+Co pysn éguy +h.c.

In neutron decay the momentum transfer is much smaller then the nucleon mass,
due to the tiny mass splitting between neutron and proton.

It is thus convenient to change variables in the Lagrangian,
and use non-relativistic version of the neutron and proton quantum fields

e—imNt c VvV
N — 1+

\/5 sz

In these variables, and expanding in powers of V, the Lagrangian simplifies

>WN+@(V2)a N=p,l’l

Fermi

Lroemi 2 — W) [C‘J; ev+Co éRuL] - (7,0"w,) [CX@ Lo v +Clepsty | + O6(Vim,)

It is clear that pseudoscalar couplings do not affect neutron decay at leading order



Non-relativistic Fermi EFT
3
L rosmi D — W) [C ey +C +eR1/L] — Z 0 w;,) [CXéLakvL+ Clrepo v | + O(Vim,)
k=1

This Lagrangian can also describe beta decays of nuclei: N —_— N’e 1

M= — M C‘J/r (X3y4) + CS+ (V3| — Z ﬂléT CX (X30k)’4) T C;f ()’35k)’4)

where the Fermi and Gamow-Teller matrix elements are

%FE<‘/’/,|ll_jpl/jn|'/V> %GT_<‘/’/|WpGWn|‘/’/>

Fermi transitions Gamow-Teller transitions
Calculable from group theory Difficult to calculate
in the isospin limit from first principles

The use of non-relativistic EFT allows one to reduce the problem of calculating
amplitudes for allowed beta transitions of nuclei to calculating
two nuclear matrix elements

Forbidden transitions correspond to higher order terms in the non-relativistic expansion



5 GeV WEFT
> GeV WEFT-4

Fermi EFT
1 GeV
100 MeV Chiral Perturbation Theory
1 MeV effective QED

Euler-Heisenberg EFT







