Some topics in supersymmetric models and concrete implementations in SUSY-codes

Jean-Loïc Kneur

LPTA, Montpellier

LPSC Grenoble, 26-29 octobre 2008

Tentative plan

Seminar 1:

- 1. Short review of motivations for supersymmetry
- 2. Ingredients and construction of supersymmetric Lagrangians
- 3. Essential of Minimal Supersymmetric Standard Model (MSSM)
- 4. SUSY-breaking issues: spontaneous, explicit, problems
- 5. Different popular SUSY-breaking models (minimal SUGRA, GMSB, AMSB, ...)
- 6. Concrete implementation in SUSY-code "SuSpect"

Seminar 2:

- 7. Basics of renormalization group (RG) techniques
- 8. RGE in MSSM: linking grand unification scale with electroweak scale
- 9. Electroweak symmetry breaking issues in MSSM
- 10. Concrete implementation in SUSY-code "SuSpect"
- 11. Some applications: constraining SUSY model parameter space

'top-down' versus 'bottom-up' reconstruction of parameters (could be seminar 3)

1. Supersymmetry: Motivations

Supersymmetry: Poincaré + Fermions → Bosons symmetry:

$$Q|F\rangle = |B\rangle, \quad Q|B\rangle = |F\rangle$$

numerous *independent* motivations +unexpected bonus

•Super-Poincaré: the largest possible symmetry (in 4-dim): basic algebra (schematically):

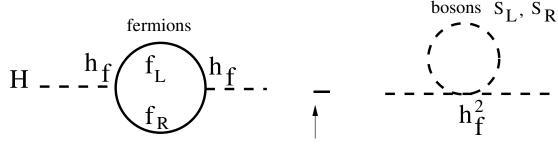
$$\{Q,Q^{\dagger}\}\propto P_{\mu};\quad [Q,P_{\mu}]=0$$

"square-root" of translation: escape of 60's no-go theorems (Coleman-Mandula) for enlarged space-time+internal symmetries $[space-time\ sym]\otimes internal\ sym]$

-if made a local symmetry, necessary ingredient of a quantum gravity → Supergravity etc

The "hierarchy" or naturalness problem

radiative corrections to Higgs mass: $\delta m_{Higgs}^2 \propto M_{GUT,Planck}^2$?? Stabilized!



relative sign + equality of couplings!

$$\delta m_H^2 = \frac{N_c h_f^2}{16\pi^2} \left[-2M_{Pl}^2 + 3m_f^2 \ln \frac{M_{Pl}^2}{m_f^2} + 2M_{Pl}^2 - 2m_s^2 \ln \frac{M_{Pl}^2}{m_s^2} \right]$$

Moreover even the \ln terms cancel if m_f , m_s arise from sym. breaking ($m_f \sim h_f v = m_s$) (another graph then) exact SUSY \rightarrow equality of masses AND couplings.

Broken SUSY: $m_f \neq m_s \rightarrow \ln$ terms survive: "fine-tuning" pb

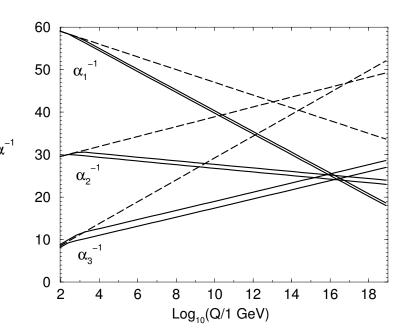
ightarrow acceptable IF $m_{sparticles} \lesssim \mathcal{O}$ (1 TeV)

NB origin of the large rad. corr. $\propto m_t^4 \ln[..]$ to MSSM H mass

+Unexpected bonus (not original motivations but welcome)

Grand Unification consistent with Proton lifetime limits

-Due to SUSY particle threshold+ SUSY Renor Group Evol.(totally excluded in SM)

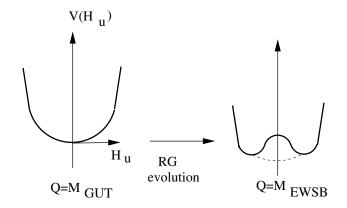


-Unification scale $M_{GUT}>10^{16}$: large enough to escape Proton decay limits (Superkamiokande) $\sim 1.9~10^{33}$ years -However, 1-2% mismatch $1-\alpha_S(M_{GUT})/\alpha_1(M_{GUT})$: hoped to be explained by GUT scale threshold corrections...

(but dim 5 operators can disturb this "conventional wisdom"!)

Another unexpected bonus..

 • Radiative electro-weak sym. breaking: "mexican hat" scalar potential induced by Renormalization Group (RG) evolution:
 GUT → low energy



 $m_{H_u}^2(E) < 0$ by RG evolution $E_{GUT} \to E_{EWSB}$ ($\propto m_t^2$) made possible thanks to the large value of m_{top} ! (does not explain why m_{top} is large, though)

NB more on this RGE/EWSB issues in seminar 2

Yet another unexpected bonus...

•Very plausible candidate to Dark Matter (neutralino LSP) present strong indication that \sim 10% of mass in universe is neutral, weakly interacting cold DM

But, problem: SUSY has to be broken: what's the right model? :<...

To date: NO consistent model of spontaneous (or dynamical) SUSY-breaking! (breaking has to be in a "hidden" sector)

→ proliferation of SUSY-breaking (arbitrary) parameters:
 All possible gauge-invariant interactions between quite many
 (s)particles.. IF no more theoretical prejudices applied

2. Basics of supersymmetric gauge theories

 Supersymmetric extensions of SM follow the rules of (super)gauge theories:

based on two set of fields with specific gauge+susy transformations:

- -Chiral fields: left-handed fermions + scalar partners
- -Vector fields: vector gauge bosons + fermion (majorana) partners
- -Right handed fermions: from charge conjugate representation of chiral fields: $(\psi_R)^c = (\psi^c)_L$
- _-Higgs field: described by chiral fields: \Leftrightarrow fermion partners

A bit of supersymmetric formalism

Basic ingredients: 2-components spinors χ_{α} , $\bar{\psi}^{\dot{\alpha}}$ $\alpha, \dot{\alpha}=1,2$ makes supersymmetric properties more manifest may be contracted to form Lorentz-invariants:

 $(\psi \chi) \equiv \psi^{\alpha} \chi_{\alpha} \equiv \psi^{\alpha} \epsilon_{\alpha\beta} \chi^{\beta}$, $\epsilon_{\alpha\beta}$ antisymmetric: $\epsilon_{12} = -\epsilon_{21} = 1$ Standard Dirac spinor (4-component object):

$$\Psi_D = \begin{pmatrix} \chi_{\alpha} \\ \bar{\psi}^{\dot{\alpha}} \end{pmatrix}$$
, $\bar{\Psi}_D \equiv \Psi^{\dagger} \gamma_0 = (\psi^{\alpha}, \ \bar{\chi}_{\dot{\alpha}})$, $\gamma_{\mu} = \begin{pmatrix} 0 & \sigma_{\mu} \\ \bar{\sigma}_{\mu} & 0 \end{pmatrix}$

ightarrow standard (Dirac) contraction e.g. $\bar{\Psi}_D\Psi_D=\psi\chi+h.c.$ etc

Majorana:
$$\Psi_M=\left(egin{array}{c}\chi^lpha\ ar\chi^{\dotlpha}\end{array}
ight)$$
 i.e. such that $\Psi_M^c=\Psi_M$

Note
$$(\Psi_D)_L = \frac{1}{2}(1 - \gamma_5)\Psi_D = \chi_{\alpha}$$
, $(\Psi_D)_R = \frac{1}{2}(1 + \gamma_5)\Psi_D = \bar{\psi}^{\dot{\alpha}}$

Superspace formalism

Convenient: describe boson+ fermion by same "superfield": in addition to usual space coordinate x_{μ} , introduce new anticommuting spinor variables θ_{α} , $\theta_{\dot{\alpha}}$

$$\theta_{\alpha}\theta_{\beta} = -\theta_{\beta}\theta_{\alpha} \to (\theta_{\alpha})^2 = 0$$
 but $\theta\theta \equiv \theta^{\alpha}\epsilon_{\alpha\beta}\theta^{\beta} \neq 0!$

e.g chiral superfield (irreducible SUSY representation):

$$\Phi(x, \theta, \bar{\theta} = 0) = \phi(x) + \sqrt{2}\theta\psi(x) + \theta^2F(x)$$

where ϕ scalar, ψ fermion, F scalar (auxiliary) fields

-Expansion stops at θ^2 due to anticommuting properties of θ

-F "scalar" has dim $[m]^2$ and NO kinetic term

(⇔ function of other fields from its eq. of motion):

F assures (off-shell) matching of boson vs fermion d^0 freedom

Supersymmetric transformation of fields

Supersymmetry transformation = translation in superspace parameterized in terms of infinitesimal (Grassman) ζ -SUSY generators expressed as derivative operators $Q_{\alpha} = -i\partial_{\theta} + \sigma^{\mu}\bar{\theta}\partial_{\mu}$ (analog of $P_{\mu} \rightarrow i\partial_{\mu}$) where extra terms originates from $\{Q,Q^{\dagger}\} \propto P_{\mu}$

Components of chiral field transform as

$$\delta\phi = \sqrt{2}\zeta \frac{\psi}{\psi}, \qquad \delta F = -i\sqrt{2}\zeta\sigma^{\mu}\partial_{\mu}\frac{\psi}{\psi}$$

$$\delta \psi = -i\sqrt{2}\sigma^{\mu}\bar{\zeta}\partial_{\mu}\phi + \sqrt{2}\zeta F$$

Note F transforms as total derivative:

a basic ingredient for SUSY-invariant Lagrangians

Vector Superfield (are hermitian)

Similarly the vector superfield reads in the simplest gauge choice (so called Wess-Zumino):

$$V(x,\theta,\bar{\theta}) = -(\theta\sigma^{\mu}\bar{\theta})V_{\mu} + i\theta^{2}\bar{\theta}^{\bar{\lambda}} - i\bar{\theta}^{2}\theta^{\lambda} + \frac{1}{2}\theta^{2}\bar{\theta}^{2}D$$

where V_{μ} usual vector field, λ its Majorana fermion partner, D auxiliary (scalar), with appropriate SUSY-transformations.

Again, auxiliary field D transforms as total derivative

There is also a chiral superfield, derived from V, generalizing "gauge field strength":

$$W_{\alpha}(x,\theta,\bar{\theta})=-i\lambda_{\alpha}+(\theta\sigma_{\mu\nu})^{\alpha}F^{\mu\nu}+\theta^{\alpha}D-\theta^{2}(\bar{\sigma}^{\mu}\mathcal{D}_{\mu}\bar{\lambda})^{\alpha}$$
 tranforms like usual $V_{\mu\nu}$ under gauge symmetry

→ building blocks to construct SUSY-invariant Lagrangian.

Supersymmetric Lagrangian

Armed with this formalism, "straightforward" to construct SUSY- and gauge-invariant Lagrangians

$$\mathcal{L}_{SUSY} = \frac{1}{4g^2} (Tr[W^{\alpha}W_{\alpha}]_F + h.c) + \sum_{i} [\bar{\Phi}e^{(gV)}\Phi]_D + [W(\Phi)]_F$$

where $[\cdot \cdot \cdot]_{F,D}$ means appropriate "projection" $(\theta^2, \theta^2 \bar{\theta}^2 \text{ coefficients resp.})$ that transform as total derivative.

 $W(\Phi)$ superpotential = dim-3 gauge-invariant polynomial function of chiral field Φ :

$$W(\Phi) = c_i \Phi_i + \frac{m_{ij}}{2} \Phi_i \Phi_j + \frac{\lambda_{ijk}}{3!} \Phi_i \Phi_j \Phi_k$$

Scalar potential:

$$V(F_i, F_i^*, D^a) = \sum_i F_i^* F_i + \frac{1}{2} \sum_a (D^a)^2$$

$$F_i^* = \frac{\partial W(\Phi)}{\partial \Phi_i}$$
, $D^a = -g \sum_i (\phi_i^* T^a \phi_i)$

3. Minimal Supersymmetric Standard Model (MSSM) in short

Table 1: Chiral Supermultiplet of MSSM

(s)particles		spin 0	spin 1/2	$SU(3)_c$, $SU(2)_L$, $U(1)_Y$
squarks, quarks	Q	$(ilde{u}_L, ilde{d}_L)$	(u_L,d_L)	(3, 2, 1/6)
(x 3 families)	$ar{u}$	$ ilde{u}_R^*$	u_R^\dagger	$(\bar{3}, 1, -2/3)$
	$ar{d}$	$ ilde{d}_R^*$	d_R^\dagger	$(\bar{3}, 1, 1/3)$
sleptons, leptons	L	$(ilde{ u}, ilde{e}_L)$	(u,e_L)	(1, 2, -1/2)
(x 3 families)	$ar{e}$	$ ilde{e}_R^*$	e_R^\dagger	(1,1,1)
Higgs, Higgsinos	H_u	(H_u^+, H_u^0)	$(\tilde{H}_u^+, \tilde{H}_u^0)$	(1,2,1/2)
	H_d	(H_d^0, H_d^-)	$(\tilde{H}_d^0,\tilde{H}_d^-)$	(1, 2, -1/2)

Table 2: Vector Supermultiplet of MSSM

(s)particles	spin 1/2	spin 1	$SU(3)_c$, $SU(2)_L$, $U(1)_Y$
gluino, gluon	\tilde{g}	g	(8, 1, 0)
Winos, W boson	$\tilde{W}^{\pm}, \tilde{W}^{0}$	$W^{\pm}W^0$	(1, 3, 0)
Binos, B boson	\tilde{B}	В	(1, 1, 0)

MSSM Superpotential (R-parity conserving!)

$$\overline{W} = \sum_{i,j=gen} -Y_{ij}^u \, \hat{u}_{Ri} \hat{H}_u. \hat{Q}_j + Y_{ij}^d \, \hat{d}_{Ri} \hat{H}_d. \hat{Q}_j + Y_{ij}^l \, \hat{l}_{Ri} \hat{H}_d. \hat{L}_j + \mu \hat{H}_u. \hat{H}_d \,,$$

$$\mathcal{L}_{SUSY} = \text{kin. terms (susy +gauge)} + F^2, D^2 \text{ terms} \propto \partial_{\phi_i} W, \text{ etc}$$

- \hat{H}_u , \hat{Q} etc superfield: contain both fermion+boson Note at this (exact supersymmetric SM) stage:
- $-m_{fermions} = m_{bosons}$? Yes, before EWSB, but most masses zero!
- -quartic couplings determined by gauge couplings
- -equality of fermion and boson couplings: essential for cancellation of all quadratic UV div.
- \Rightarrow only logarithmic div (wave fction and gauge cpling renormalization, superpotential $W(\Phi)$ NOT renormalized)
- -Only new parameter: μ
- Clearly unrealistic! must introduce supersymmetry breaking...

Digression: R-parity and its violation business

In MSSM, Higgs superfields H_u, H_d have same quantum numbers as leptons: \to SUSY+gauge-inv allow mixing: $\mu^i L_i H_u, \lambda^{ijk} L_i L_j \bar{e}_k$ etc \to L-violation + ν -mass contributions !! similarly trilinear quark terms allowed: $\bar{u} \bar{d} \bar{d} \to B$ -violation

Some couplings very constrained by rare decays, P decay, etc, but not all

- \rightarrow introduce discrete symmetry: R-parity (Fayet 1976) $R=(-1)^{2s+3B+L}$
- $\rightarrow R_P(\text{matter fermions}) = +1, \ R_P(\text{all spartners}) = -1$ ensure that superpartners produced by pairs lightest R_P -odd partner (LSP) stable (DM candidate)

Rk: R_P is discrete version of U(1) R-sym in extended models

General (arbitrary) parameters of "soft" SUSY-breaking:

soft SUSY-breaking = that do not reintroduce quadratic UV divergences

•Mass Terms for Gluinos, Winos and Binos:

$$-\mathcal{L}_{\text{gaugino}} = \frac{1}{2} \left[M_1 \tilde{B} \tilde{B} + M_2 \sum_{a=1}^{3} \tilde{W}^a \tilde{W}_a + M_3 \sum_{a=1}^{8} \tilde{G}^a \tilde{G}_a + \text{h.c.} \right]$$

minimal SUGRA universality: $M_1(E_{GUT}) = M_2(E_{GUT}) = M_3(E_{GUT}) \equiv m_{1/2}$

•Mass terms for sfermions:

$$-\mathcal{L}_{\text{sfermions}} = \sum_{i=qen} m_{\tilde{Q}i}^2 \tilde{Q}_i^{\dagger} \tilde{Q}_i + m_{\tilde{L}i}^2 \tilde{L}_i^{\dagger} \tilde{L}_i + m_{\tilde{u}i}^2 |\tilde{u}_{R_i}|^2 + m_{\tilde{d}i}^2 |\tilde{d}_{R_i}|^2 + m_{\tilde{l}i}^2 |\tilde{l}_{R_i}|^2$$

mSUGRA universality: $m_{\tilde{Q}i}(E_{GUT}) = \cdots = m_{\tilde{l}i}(E_{GUT}) \equiv m_0$

Mass and bilinear terms for Higgs scalars:

$$-\mathcal{L}_{\mathrm{Higgs}} = m_{H_u}^2 H_u^\dagger H_u + m_{H_d}^2 H_d^\dagger H_d + B \mu (H_u.H_d + \mathrm{h.c.})$$
 mSUGRA universality: $m_{H_u}^2 (E_{GUT}) = m_{H_d}^2 (E_{GUT}) \equiv m_0^2$

•Finally, some trilinear interactions between scalars (sfermions and Higgs bosons):

$$-\mathcal{L}_{\text{tril.}} = \sum_{i,j=gen} \left[-A_{ij}^u Y_{ij}^u \tilde{u}_{R_i} H_u. \tilde{Q}_j + A_{ij}^d Y_{ij}^d \tilde{d}_{R_i} H_d. \tilde{Q}_j + A_{ij}^l Y_{ij}^l \tilde{l}_{R_i} H_d. \tilde{L}_j + \text{h.c.} \right]$$

mSUGRA universality: $A^u_{ij}(E_{GUT})=A^d_{ij}(E_{GUT})=A^l_{ij}(E_{GUT})\equiv A_0\delta_{ij}$

Sparticle spectrum: • 5 Higgs scalars: h, H, H^{\pm}, A

- •2 Charginos: $\tilde{\chi}_{1,2}^{\pm}$; 4 neutralinos $\tilde{\chi}_{1-4}^{0}$, 1 gluino \tilde{g}
- •Numerous sfermions: sleptons $(\tilde{e}, \tilde{\mu}, \tilde{\nu}_e, \tilde{\tau}_{1,2})$,

squarks: $(\tilde{u}, \tilde{d}, ..\tilde{b}_{1,2}, \tilde{t}_{1,2})$

From Lagrangian to concrete masses and couplings

1) Sfermion sector:

$$W_{superpotential} = -Y_u \,\hat{u}_R \hat{H}_u . \hat{Q} + \dots + \mu \hat{H}_u . \hat{H}_d ,$$

$$ightarrow \mathcal{L}_{SUSY}^{scalar} \sim |\frac{\partial W}{\partial \phi}|^2 + \sum_i g_i^2 (\phi T_i \phi)^2$$
, $\phi = \tilde{Q}, \tilde{H}_{u,d}, \tilde{u}_R$ (F and D terms respectively)

thus generate $\phi\phi$, $\phi\phi\phi$, $\phi\phi\phi\phi$ terms

$$\rightarrow$$
 AFTER EWSB: $H_u \rightarrow v_u + ..., H_d \rightarrow v_d + ..., v_u = v \sin \beta, v_d = v \cos \beta$

give $\tilde{u}\tilde{u}$ ($\tilde{t}\tilde{t}$ etc) mass terms and $\tilde{u}\tilde{u}H$ couplings:

from
$$|F|^2$$
: $Y_t^2 H_u H_u Q_L^* Q_L \rightarrow (\mathsf{EWSB}) \rightarrow [m_t^2, Y_t^2 v_u]$ same for $Y_t^2 H_u H_u t_R^* t_R$

$$\mu Y_t t_R^* Q_L H_d \rightarrow (\mathsf{EWSB}) \rightarrow [\mu Y_t v_d, \mu Y_t]$$

from
$$|D|^2$$
: $g^2(Q_L^*T_3Q_L)(H_uH_u, H_dH_d) \to (\text{EWSB}) \to g^2[v_u^{(2)}, v_d^{(2)}]$

same for
$$g'^2(t_R^*yt_R)(H_uH_u,H_dH_d) \to g'^2[v_u^{(2)},v_d^{(2)}]$$

Now add soft-breaking terms:

direct mass terms: $-m_{t_L}^2 ilde{Q}_L^* Q_L - m_{t_R}^2 ilde{t}_R^* ilde{t}_R$

trilinear: $-A_tY_t\tilde{u}_RH_u\tilde{Q}_L \rightarrow (\mathsf{EWSB}) \rightarrow [A_tY_t, A_tY_tv_u]$

All terms combine to give sfermion mass matrix:

$$M_{\tilde{f}}^2 \equiv \begin{pmatrix} m_{LL}^2 & m_{LR}^2 \\ m_{LR}^2 & m_{RR}^2 \end{pmatrix}$$

$$m_{LL}^{2} = m_{\tilde{f}_{L}}^{2} + (T_{f}^{3} - e_{f}s_{W}^{2})M_{Z}^{2}\cos 2\beta + m_{f}^{2}$$

$$m_{LR}^{2} = m_{f}(A_{f} - \mu r_{f}), \quad (r_{b} = r_{\tau} = 1/r_{t} = \tan \beta)$$

$$m_{RR}^{2} = m_{\tilde{f}_{R}}^{2} + e_{f}s_{W}^{2}M_{Z}^{2}\cos 2\beta + m_{f}^{2}$$

$$\tan 2\theta_f = \frac{2m_{LR}^2}{m_{LL}^2 - m_{RR}^2}$$

$$\begin{pmatrix} \tilde{f}_1 \\ \tilde{f}_2 \end{pmatrix} = \begin{pmatrix} \cos \theta_f & \sin \theta_f \\ -\sin \theta_f & \cos \theta_f \end{pmatrix} \begin{pmatrix} \tilde{f}_L \\ \tilde{f}_R \end{pmatrix}$$

2. Chargino and Neutralino sector

NB tracing origin: (soft breaking; susy; D-term after EWSB) Charginos:

$$M_C = \begin{pmatrix} M_2 & \sqrt{2}M_W \sin \beta \\ \sqrt{2}M_W \cos \beta & \mu \end{pmatrix}$$

Neutralinos: in the $(-i\tilde{B}, -i\tilde{W}_3, \tilde{H}_1^0, \tilde{H}_2^0)$ basis:

$$M_N = \begin{pmatrix} M_1 & 0 & -M_Z s_W \cos \beta & M_Z s_W \sin \beta \\ 0 & M_2 & M_Z c_W \cos \beta & -M_Z c_W \sin \beta \\ -M_Z s_W \cos \beta & M_Z c_W \cos \beta & 0 & -\mu \\ M_Z s_W \sin \beta & -M_Z c_W \sin \beta & -\mu & 0 \end{pmatrix}$$

Diagonalized by real (by convention) matrix N_{ij}

e.g. LSP
$$\chi_1^0 = N_{11} \tilde{B} + N_{12} \tilde{W}_3 + N_{13} \tilde{H}_d + N_{14} \tilde{H}_u$$

3. Higgs sector

$$V_{Higgs} = (m_{H_d}^2 + \mu^2) H_d^{\dagger} H_d + (m_{H_u}^2 + \mu^2) H_u^{\dagger} H_u + B \mu H_u \cdot H_d$$

$$+ \frac{g_1^2 + g_2^2}{8} (H_d^{\dagger} H_d - H_u^{\dagger} H_u)^2 + \frac{g_2^2}{2} (H_d^{\dagger} H_u) (H_u^{\dagger} H_d)$$

pseudoscalar A: $\bar{m}_A^2(Q) \equiv \frac{B\mu}{\sin\beta\cos\beta} = m_{H_d}^2 + m_{H_u}^2 + 2\mu^2$

$$\mathcal{M}^{S}(q^{2}) = \begin{pmatrix} \bar{M}_{Z}^{2} \cos \beta^{2} + \bar{M}_{A}^{2} \sin^{2} \beta - S_{11}(q^{2}) & -\frac{1}{2}(\bar{M}_{Z}^{2} + \bar{M}_{A}^{2}) \sin 2\beta - S_{12}(q^{2}) \\ -\frac{1}{2}(\bar{M}_{Z}^{2} + \bar{M}_{A}^{2}) \sin 2\beta - S_{12}(q^{2}) & \bar{M}_{Z}^{2} \sin^{2} \beta + \bar{M}_{A}^{2} \cos^{2} \beta - S_{22}(q^{2}) \end{pmatrix}$$

 $\rightarrow m_h, m_H$ neutral eigenstates ($S_{ij}(q^2)$ rad.corr. from self-energies)

Approx. :
$$m_h^2 \sim m_h^{2,tree} + \frac{3gm_t^4}{8\pi^2 m_W^2} \left[\ln\left(\frac{m_{\tilde{t}_1} m_{\tilde{t}_2}}{m_t^2}\right) + \frac{X_t^2}{M_S^2} - \frac{X_t^4}{12M_S^4} \right]$$

where
$$X_t = A_t - \mu \cot \beta$$
, $M_S^2 \simeq m_{\tilde{t}_1} m_{\tilde{t}_2}$

4. How to break supersymmetry?

Why is it so difficult to break SUSY spontaneously?

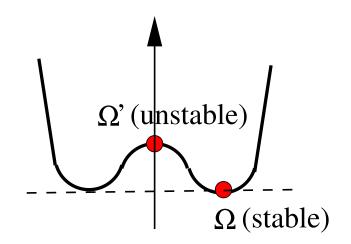
SUSY algebra involves the Hamiltonian: $H = P_0 = \sum Q_{\alpha}^2 \ge 0$

→ expect (in global SUSY)

$$\langle H \rangle_{\Omega \ supersymmetric} = 0;$$

$$\langle H \rangle_{\Omega' \ non-supersymmetric} > 0$$

$$V \sim \frac{1}{2} \sum (F^2 + D^2) > 0$$



from SUSY-transformation (schematically):

$$\delta\psi\sim(\sigma^{\mu}\partial_{\mu}\phi+F)\zeta$$
,

$$\delta\psi \sim (\sigma^{\mu}\partial_{\mu}\phi + F)\zeta, \qquad \delta\lambda \sim (\sigma^{\mu}\sigma^{\nu}V_{\mu\nu} + D)\zeta$$

 $\langle F \rangle$ and/or $\langle D \rangle \neq 0 \leftrightarrow \langle \delta \psi \rangle$ and/or $\langle \delta \lambda \rangle \neq 0$ spont. breaking with sfermion ψ or gaugino λ Goldstone fermion resp.

(Analogy with usual SSB: $\delta\phi_2=\theta\phi_1$, so $\langle\phi_1\rangle\neq0$ \to $\langle\delta\phi_2\rangle\neq0$)

Only way to get spontaneous SUSY-breaking:

look for models where $F_i = 0$ and/or $D^a = 0$ cannot be simultaneously satisfied for any field values.

Toy models do exist, but turn to be both

-contrived and exceptional situations

-phenomenologically unrealistic (can't match SM gauge etc structure and/or strongly already excluded e.g due to sparticle mass limits)

Toy models of spontaneous SUSY-breaking

-O'Raifeartaigh: (F-term breaking) superpotential W:

$$W = \lambda \Phi_3(\Phi_1^2 - M^2) + m\Phi_2\Phi_3$$
 such that
$$V = \sum_i |F_i|^2 = |m\phi_1|^2 + |\lambda(\phi_1^2 - M^2)|^2 + |m\phi_2 + 2\lambda\phi_3\phi_1|^2$$

immediate that the first two terms can't be both zero → SSSB.

More precisely if $|m|^2 > 2|\lambda^2 M^2|$ global min at $\phi_1 = \phi_2 = 0$; $\to \langle F_3 \rangle \neq 0$: flat direction along ϕ_3 (so-called "moduli" field)

SUSY-breaking manifests as fermion ψ_1 mass m while ϕ_1^+, ϕ_1^- mass $m^2 \pm 2\lambda^2 M^2$.

However note the sum rule (a generic feature):

$$m_{\phi_1^-}^2 + m_{\phi_1^+}^2 = 2 m_{\psi_1}^2$$
 just like exact SUSY...

Clearly excluded in MSSM!

D-term spontaneous SUSY-breaking

Fayet-Iliopoulos model: for U(1) gauge symmetry

$$V = |mQ|^2 + |m\bar{Q}|^2 + \frac{1}{8}|Q^{\dagger}Q - \bar{Q}^{\dagger}\bar{Q} + 2\kappa_{FI}|^2$$
, Q, \bar{Q} chiral Sfields.

Linear term in κ_{FI} allows SSSB (for $m^2 > \kappa_{FI}/2$):

only OK for U(1) (non-abelian sym: no invariant linear term!).

- -maybe possible for extra U(1) beyond SM: Z' models (Still, not sufficient for realistic MSSM spectrum)
- -Note D-term and F-term present in MSSM: some $m_F \neq m_B$ amount triggered by EWSB...
- (e.g. in sfermions mass terms) but not consistent alone (tachyonic and/or obviously excluded) sfermion masses typically \rightarrow MSSM really needs soft terms!
- → SUSY-breaking in hidden sector, communicated to SM

5. Generic features of hidden sector SUSY-breaking

Analogy with EWSB in SM: parameterized by $\langle v \rangle$

EWSB sector	Mediating interactions	Observable sector
	(= Yukawa couplings)	
$h o \langle v \rangle$	h,q,l	q, l

"Hidden" SUSY-breaking	Mediating interactions	Observable sector
sector		
$Z \to \langle F \rangle$	Z,Q,L	Q, L

SUSY-breaking parameterized by $\langle F \rangle$ of dim $[m]^2$

3 popular patterns: gravity-, gauge-, and anomaly-mediated Actually all appear in a complete Supergravity picture!

Distinction arise from assumption on dominant mechanisms

Gravity-mediated susy breaking (minimal SUperGRAvity)

Start from Supergravity with "Kähler potential" $K(\phi, \phi^*)$ (Non-renormalizable terms) \rightarrow suppressed by $1/M_{Planck}$ \rightarrow soft terms of order $\sim \langle F \rangle / M_{Planck}$ when $Z \rightarrow \langle F \rangle$: $c_{ij} \ \frac{Z^{\dagger}Z}{M_{Planck}^2} \ \phi_i^* \phi_j \rightarrow m_0^2 \ \text{scalar masses}$ $c_a \ \frac{Z}{M_{Planck}} \ \lambda_a \lambda_a \rightarrow m_{1/2} \ \text{gaugino masses}$ $c_{ijk} \ \frac{Z}{M_{Planck}} \ \phi_i \phi_j \phi_k \rightarrow A_0 \ \text{trilinear terms}$

 $F \sim M_{weak} M_{Planck} \sim [10^{10} GeV]^2$: high scale SUSY-breaking (but $\langle F \rangle$ may also be triggered by gaugino condensation) -Caution: famous universality in mSUGRA comes from minimal assumptions on Kähler and Super potential (i.e *separable* hidden/visible $K(\phi, \phi^*)$, $W(\phi)$ contributions) Non-universal terms are there in more general scenario...

- n 29/5

Practical implementation of minimal SUGRA

-Unification of the gaugino [bino, wino and gluino] masses:

$$M_1(M_{\rm GUT}) = M_2(M_{\rm GUT}) = M_3(M_{\rm GUT}) \equiv m_{1/2}$$

-Universal scalar [i.e. sfermion and Higgs boson] masses [i is the generation index]:

$$M_{\tilde{Q}_i}(M_{\rm GUT}) = M_{\tilde{u}_{Ri}}(M_{\rm GUT}) = M_{\tilde{d}_{Ri}}(M_{\rm GUT}) = M_{\tilde{L}_i}(M_{\rm GUT}) = M_{\tilde{l}_{Ri}}(M_{\rm GUT})$$

$$= M_{H_u}(M_{\rm GUT}) = M_{H_d}(M_{\rm GUT}) \equiv m_0$$

-Universal trilinear couplings:

$$A_{ij}^u(M_{\text{GUT}}) = A_{ij}^d(M_{\text{GUT}}) = A_{ij}^l(M_{\text{GUT}}) \equiv A_0 \delta_{ij}$$

Apart from $m_{1/2}, m_0$ and A_0 , input are μ and $\tan \beta = v_u/v_d$ after consistent EWSB requirement.

Gauge-mediated SUSY-breaking (GMSB)

Add N "messenger" \hat{Q},\hat{L} heavy (S)fields with mass M_{mess} and

singlet \hat{S} : $\lambda \hat{S}(\hat{Q}\hat{Q}+\hat{L}\hat{L})$ with SUSY-breaking vev $\langle F \rangle$ that couple to SM gauge fields

$$M_{\lambda}^{i} \sim N \frac{g_{i}^{2}}{16\pi^{2}} \frac{\langle F \rangle}{M_{mess}}$$
 $\frac{\lambda}{M_{mess}} \frac{\lambda}{M_{mess}} \frac{\lambda}{M_$

Trilinear terms $A_i(M_{mess}) \sim 0$ (2-loop; but much suppressed)

choose $M_{mess} \ll M_{Planck}$:

$$\frac{F}{M_{mess}} \gg \frac{F}{M_{Planck}} \rightarrow \text{gravity-mediated contributions negligible}$$

Scalar masses determined by gauge quantum nbs: solve SUSY flavor pb

Low scale SUSY breaking $F \sim M_{mess}^2$, $\sqrt{F} \sim 10^4$ GeV but $10^4 {\rm GeV} \lesssim M_{mess} \lesssim 10^{14}$ GeV possible

NB LSP can be (very light) gravitino: $M_{3/2} \sim \langle F \rangle / M_{Planck}$

Practical implementation of GMSB

messenger scale $M_{\text{mes}} = \lambda \langle S \rangle$,

$$M_{i}(M_{mes}) = \frac{\alpha_{i}(M_{mes})}{4\pi} \Lambda g \left(\frac{\Lambda}{M_{mes}}\right) \sum_{m} N_{R}^{i}(m)$$

$$m_{s}^{2}(M_{mes}) = 2\Lambda^{2} f \left(\frac{\Lambda}{M_{mes}}\right) \sum_{m,G} \left[\frac{\alpha_{i}(M_{mes})}{4\pi}\right]^{2} N_{R}^{G}(m) C_{R}^{G}(s)$$

$$A_{i}(M_{mes}) \simeq 0$$

where $\Lambda = F_S/S$, G = U(1), SU(2), SU(3),

$$\mathcal{NC}(\tilde{Q}) = \frac{1}{16\pi^2} \left[\left(\frac{n_{\hat{l}}}{100} + \frac{n_{\hat{q}}}{150} \right) \alpha_1^2 + \frac{3n_{\hat{l}}}{4} \alpha_2^2 + \frac{4n_{\hat{q}}}{3} \alpha_3^2 \right]$$

and similar expressions for U, D, E, L, H_u, H_d

$$g(x) = \frac{1}{x^2} [(1+x)\log(1+x) + (1-x)\log(1-x)]$$

$$f(x) = \frac{1+x}{x^2} \left[\log(1+x) - 2\text{Li}_2\left(\frac{x}{1+x}\right) + \frac{1}{2}\text{Li}_2\left(\frac{2x}{1+x}\right) \right] + (x \leftrightarrow -x)$$

NB intermediate scale $Q_{EWSB} \ll M_{mes} \ll Q_{GUT}$ for RGE

Anomaly-mediated SUSY-breaking (AMSB)

The anomaly (symmetry breaking at quantum level) of the (super)conformal symmetry induces soft SUSY breaking!

NB was always present; but assumed sub-dominant (loop-suppressed) in standard "mSUGRA"

gauginos:
$$M_i \sim b_i \frac{g_i^2}{16\pi^2} M_{3/2}$$
 $b_i(RGE) = (33/5, 1, -3)$

squarks, sleptons: $(m^2)^i_j \sim (\dot{\gamma})^i_j [\frac{M_{3/2}}{16\pi^2}]^2$; also $A_i \sim \frac{M_{3/2}}{16\pi^2}$

 γ_i^i standard RGE anomalous mass dimensions

e.g.
$$\gamma_Q = -Y_u^\dagger Y_u - Y_d^\dagger Y_d + \sum_i c_i g_i^2$$

Almost flavor blind!

But generally tachyonic \tilde{l}_L , $\tilde{l}_R \to \text{add a } m_0 \text{ term by hand...}$ however some recent criticisms (e.g. Dine+Seiberg '07)

perhaps more consistent " m_0 " terms will soon emerge??..

Practical implementation of AMSB

$$M_{a} = \frac{\beta_{g_{a}}}{g_{a}} m_{3/2} ,$$

$$A_{i} = \frac{\beta_{Y_{i}}}{Y_{i}} m_{3/2}$$

$$m_{i}^{2} = -\frac{1}{4} \left(\sum_{a} \frac{\partial \gamma_{i}}{\partial g_{a}} \beta_{g_{a}} + \sum_{k} \frac{\partial \gamma_{i}}{\partial Y_{k}} \beta_{Y_{k}} \right) m_{3/2}^{2}$$

NB RG invariant Eqs → valid at any scale!

$$m_{\tilde{S}_i}^2 = c_{S_i} m_0^2 - \frac{1}{4} \left(\Sigma_a \frac{\partial \gamma_i}{\partial g_a} \beta_{g_a} + \Sigma_k \frac{\partial \gamma_i}{\partial Y_k} \beta_{Y_k} \right) m_{3/2}^2 + \text{D terms.}$$

where ad hoc c_{S_i} correct for tachyonic sfermions...

model param.: $m_0, m_{3/2}, \tan \beta, \operatorname{sign}(\mu), c_{S_i}$

E.g. pheno. "minimal" AMSB model: $c_Q = c_{u_R} = \cdots = 1$

-"gaugino assisted" AMSB where gauge and gaugino fields are in bulk (extra-D):

$$c_Q = 21/10, c_{u_R} = 8/5, c_{d_R} = 7/5, c_L = 9/10, c_e = 3/5, c_{H_u} = 9/10c_{H_d}$$

Ingredients of spectrum calculation in MSSM

- -for example SuSpect 2.41 (A. Djouadi, JLK, G. Moultaka)
- •Low energy input $\alpha(M_Z), \alpha_S(M_Z), M_t^{\text{pôle}}, M_{\tau}^{\text{pôle}}, m_b^{\overline{\text{MS}}}(m_b)$; $\tan \beta(M_Z)$

via radiative corrections
$$\Rightarrow g_{1,2,3}^{\overline{\mathrm{DR}}}(M_Z), Y_{\tau}^{\overline{\mathrm{DR}}}(M_Z), Y_{b}^{\overline{\mathrm{DR}}}(M_Z), Y_{t}^{\overline{\mathrm{DR}}}(M_Z)$$

 Choice of SUSY-breaking model (mSUGRA, GMSB, AMSB,..)

Fixes initial condition at high energy (mSUGRA: $m_0, m_{1/2}, A_0$, sign(μ), etc...).

- •Evolution of parameters by RGE down to $M_{\rm EWSB} \sim \mathcal{O}(100 GeV fewTeVs)$
- •Control of EWSB consistency (convergence of μ , no CCB minima, etc...)
- Diagonalisation of mass mixing matrices and pole mass calculation (Including Rad. Corrections for Higgses, sfermions, gauginos)

Low energy input: $\alpha(M_Z)$, $\alpha_S(M_Z)$, M_t^{pole} , M_τ^{pole} , $m_b^{\overline{\text{MS}}}(m_b)$; $\tan \beta(M_Z)$ Radiative corrections $\Rightarrow g_{1,2,3}^{\overline{DR}}(M_Z), Y_{\tau}^{\overline{DR}}(M_Z), Y_{b}^{\overline{DR}}(M_Z), Y_{t}^{\overline{DR}}(M_Z)$ First iteration: no SUSY radiative corrections. $g_1 = g_2 \cdot \sqrt{3/5}$ $M_{\rm GUT} \sim 2 \cdot 10^{16} \text{ GeV}$ One— or two–loop RGE with choice: Choice of SUSY-breaking model (mSUGRA, GMSB, AMSB, or pMSSM). Fix your high-energy input (mSUGRA: $m_0, m_{1/2}, A_0, \operatorname{sign}(\mu), \operatorname{etc...})$. Run down all parameters with RGE to m_Z and $M_{\rm EWSB}$ scales First iteration: guess for M_{EWSB} . EWSB: $\mu^2, \mu B = F_{\text{non-linear}}(m_{H_u}, m_{H_d}, \tan \beta, V_{\text{loop}})$ $V_{\text{loop}} \equiv \text{Effective potential at 1-loop with all masses.}$ First iteration: V_{loop} not included Check of consistent EWSB (μ convergence, no tachyons, simple CCB/UFB, etc...) Diagonalization of mass matrices and calculation of masses / couplings Radiative corrections to the physical Higgs, sfermions, gaugino masses. First iteration: no radiative corrections. Check of a reasonable spectrum: - no tachyonic masses (from RGE, EWSB or mix), -information provided on fine-tuning, CCB/UFB conditions, -calculation of MSSM contributions to: $\Delta \rho$, (g-2), $b \rightarrow s\gamma$.

Figure 1: Iterative algorithm for the calculation of the SUSY particle spectrum in SuSpect from the choice of input (first step) to the check of the spectrum (last step). The steps

```
# SUSY Les Houches Accord 2.0 - example input file for SUSPECT ver >= 2.4 -
Block MODSEL # Select model (with the second parameter):
             General MSSM (arbitrary soft terms) at low scale input:
             SUGRA (!includes non-univ. soft terms, def. in block EXTPAR):
#
#
             GMSB
#
             AMSB
                                                          3
             Bottom-up RGE for general MSSM input at EWSB scale: -1
#
             (a specific SuSpect option)
         1
             # mSUGRA
Block MINPAR # specific model input parameters
    input for SUGRA models (! comment (#) all other (GMSB, AMSB) lines):
     1
          100.
                  # mO
     2
          250.
                  # m1%2
     5
         -100.
                    # AO
     3
          10.
                 # tanbeta(MZ)
                  # sign(mu)
            1.0
    input for GMSB models (! comment (#) all other (mSUGRA, AMSB) lines):
#
      1
           100.d3 # Lambda_susy
           200.d3 # Lambda_mess
      3
           10
                  # tanbeta(MZ)
           1.
                   # sign(MU)
      5
           1
                   # Nl_mes
#
           1
                   # Nq_mes
    input for AMSB models (! comment (#) all other (mSUGRA,GMSB) lines):
      1
           450.
                   # mO
#
      2
           60.d3
                   # M_3%2 gravitino mass
                   # tanbeta(MZ)
      3
           10.
      4
           1.
                   # sign(MU)
                   # cQ : weight of mO for Q_L (3rd gen.) doublet
      5
           1.
                   # cuR : weight of mO for u_R
           1.
                   # cdR : weight of mO for d_R
           1.
                   # cL : weight of mO for L (1st, 2d gen.) doublet
      8
           1.
                   # ceR : weight of mO for e_R (1st, 2d gen.)
      9
           1.
                   # cHu : weight of mO for Hu
#
      10
           1.
      11
           1.
                   # cHd : weight of mO for Hd
                                                                             - p.37/5
```

```
BLOCK MASS
            # Mass Spectrum
# PDG code
                                  particle
                      mass
        24
                8.04539688E+01
                                  # W+
        25
                                  # h
                1.09190354E+02
        35
                                  # H
                3.77796787E+02
        36
                                  # A
                3.77333195E+02
        37
                                  # H+
                3.86150989E+02
         5
                4.70844921E+00
                                  # b pole mass calculated from mb(mb)_MSbar
   1000001
                5.31790822E+02
                                  # ~d_L
                                  # ~d_R
   2000001
                5.07639109E+02
   1000002
                5.25910490E+02
                                  # ~u_L
                                  # ~u_R
   2000002
                5.07991280E+02
   1000003
                                  # ~s_L
                5.31790822E+02
   2000003
                5.07639109E+02
                                  # ~s_R
   1000004
                5.25910490E+02
                                  # ~c_L
   2000004
                5.07991280E+02
                                  # ~c_R
   1000005
                4.79548812E+02
                                  # ~b_1
   2000005
                5.08805010E+02
                                  # ~b_2
   1000006
                3.69707369E+02
                                  # ~t_1
   2000006
                5.48452898E+02
                                    ~t_2
                                  # ~e_L
   1000011
                2.00833753E+02
   2000011
                1.42868597E+02
                                  # ~e_R
   1000012
                1.84912666E+02
                                    ~nu_eL
   1000013
                2.00833753E+02
                                    mu_L
   2000013
                1.42868597E+02
                                    ~mu_R
   1000014
                1.84912666E+02
                                  # ~nu_muL
                1.34029547E+02
   1000015
                                  # ~tau_1
   2000015
                2.04454656E+02
                                  # ~tau_2
                                    ~nu_tauL
   1000016
                1.84031067E+02
                                  #
                5.69612737E+02
                                    ~g
   1000021
                                  #
   1000022
                9.77422056E+01
                                    ~chi_10
   1000023
                1.79527580E+02
                                  # ~chi_20
   1000025
               -3.40585906E+02
                                  # ~chi_30
   1000035
                                  # ~chi_40
                3.62250249E+02
   1000024
                1.78737633E+02
                                  # ~chi_1+
                3.62315788E+02
                                  # ~chi_2+
   1000037
```

- p.38/5

Seminar 2:

- 7. Basics of renormalization group (RG) techniques
- 8. RGE in MSSM: linking grand unification scale with electroweak scale
- 9. Concrete Rad. Corr. implementation in SUSY-code "SuSpect"
- 10. Electroweak symmetry breaking issues in MSSM
- 11. Some applications: constraining SUSY model parameter space

'top-down' versus 'bottom-up' reconstruction of parameters (could be seminar 3)

7. Basics of Renormalization Group (RG) technics

renormalizable theory: finite parts of counterterms arbitrary

RG expresses how a change in these finite parts is exactly compensated by appropriate change in masses, couplings, fields, so that physical quantities are invariant

in infinitesimal form: $Q \frac{d}{dQ} G_0^N = 0$

where Q scale, G_0^N N-points bare Green fction

basic (homogeneous) RGE:

$$[Q_{\overline{\partial Q}}^{\underline{\partial}} + \beta(g)_{\overline{\partial g}}^{\underline{\partial}} - m\gamma_m(g)_{\overline{\partial m}}^{\underline{\partial}}]G^N = 0 \text{ (}\overline{MS} \text{ scheme)}$$

 $\beta(g) \equiv d g/d \ln Q$ drives running of coupling

anom. mass dim $\gamma_m(g) \equiv -d \ln m/d \ln Q$ drives running mass

only depend on g (NB in SUSY $\overline{MS} \to \overline{DR}$ to preserve susy)

Some useful results in dim.reg.

From
$$g_0 \equiv Z_g(g)$$
 $g = Q^{\epsilon/2} [g + \sum_{j=1}^{\infty} \frac{d_j(g)}{\epsilon^j}]$ (in dim.reg.)

Applying RG-inv of g_0 , i.e. $Q_{\overline{dQ}} g_0 \equiv 0$, expanding in ϵ powers, one finds basic properties:

$$\beta(g) + \frac{1}{2}(1 - g\frac{\partial}{\partial g})d_1(g) = 0$$

i.e. only simple poles determine $\beta(g)$ at any pert. order

• All higher order pole coefficients determined only from $d_1(g)$ by recurrence relations

Once renormalized, coefficient of poles in ϵ are related to coefficients of Logarithmic terms

→ RG can resum leading Logs, sub-leading logs, etc

$$g^{2}(Q_{1}) = \frac{g^{2}(Q_{2})}{1 + b_{0}g^{2}(Q_{1})\ln(Q_{2}/Q_{1})}, \quad m(Q_{1}) = m(Q_{2})[1 + b_{0}g^{2}(Q_{1})\ln(Q_{2}/Q_{1})]^{-\frac{\gamma_{0}}{2b_{0}}}$$

8. RGE for MSSM

Many interactions, many particles → non-linear coupled equations (specially scalar sector)

-gauge cplings:
$$\frac{d}{dt}g_i = b_i g_i^3 + \cdots$$
 $t \equiv \ln Q$, $b_i = (33/5, 1, -3)/(16\pi^2)$

-gaugino masses:
$$\frac{d}{dt} \ln M_i = 2b_i g_i^2 + \cdots \rightarrow \frac{M_1}{g_1^2} = \frac{M_2}{g_2^2} = \frac{M_3}{g_3^2}$$

-Yukawa couplings:

$$\frac{d}{dt}Y_t = \frac{Y_t}{16\pi^2} (6Y_t^2 + 2Y_b^2 - \frac{16}{3}g_3^2 - 3g_2^2 - \frac{13}{15}g_1^2)$$

-scalars: e.g. $m_{H_u}^2$:

$$\begin{split} &\frac{d}{dt}m_{H_u}^2 = \\ &\frac{1}{16\pi^2}[6Y_t^2(m_{H_u}^2 + m_{t_R}^2 + Y_t^2A_t^2) + \frac{3}{5}g_1^2Tr[ym^2] - 6g_2^2M_2^2 - \frac{6}{5}g_1^2M_1^2] \\ &\text{similar expressions for } m_O^2, m_u^2, m_d^2, m_L^2, ... \end{split}$$

NB Suspect (and SoftSusy, Spheno,..) include full 2-loop RGE

Solving RGE concretely

Highly non-linear coupled differential eqs...

Moreover, many different scales + different boundary conditions

$$Q = m_Z, \quad Q = Q_{EWSB}, \quad Q = Q_{GUT}$$

Actually "analytic" solutions exists, but only at 1-loop level (in semi-analytic, iterative form: Auberson +Moultaka '99, Kazakov +Moultaka '2000)

Otherwise use numerical method: Runge-Kutta (as implemented in most codes):

4th order i.e. error $\mathcal{O}(h^5)$, h finite diff. step

(adaptative steps: goes faster if smoothly varying parameters)

Top-down RGE: concrete mSUGRA (SPS1a) example

par.	GUT scale input(GeV)	EWSB scale output	
M_1	250	101.5	
M_2	250	191.6	
M_3	250	586.6	
$m_{H_d}^2$	100	$(179.9)^2$	
$m_{H_u}^2$	100	$-(358.1)^2$	
μ	determined from EWSB	356.9	
m_{e_R}	100	136	
m_{Q1_L}	100	545.8	
m_{Q3_L}	100	497	
m_{u_R}	100	527.8	
m_{t_R}	100	421.5	
m_{b_R}	100	522.4	
$-A_t$	100	494.5	
$-A_t \\ -A_b$	100	795.2	

Renormalization Group "bottom-up" evolution

•Once parameters determined at Q_{EWSB} scale, evolve them to GUT scale

RGE evidently invertible, but to evolve MSSM parameters from EWSB scale UP to GUT scale, while matching low-energy (gauge+yukawa) data is not staightforward.

+ Care to be taken: $Tr[ym^2] \neq 0$ may increase error propagations!

NB public bottom-up RGE option now installed in (new) SuSpect ver ≥ 2.40

Bottom-up RG evolution with error propagations

par.	input(GeV)	GUT output	$\Delta M_3 = \mp 1\%$	$\Delta m_{H_{u}} = \mp 1\%$	$\Delta m_{Q3_L} = \mp 1\%$
	1 1	· .	<u> </u>		
M_1	101.5	250.004	negl.	negl.	negl.
M_2	191.6	249.998	" "	" "	" "
M_3	586.6	249.999	± 2.2	" "	11 11
$m_{H_d}^2$	$(179.9)^2$	$(100.004)^2$	$(100.6)^2$	$(100.7)^2$	$(101.2)^2$
			$(99.4)^2$	$(99.2)^2$	$(98.7)^2$
$m_{H_u}^2$	$-(358.1)^2$	$(100.017)^2$	$(132.6)^2$ -	$(64.9)^2$	$(63.7)^2$ -
			$(48.4)^2$	$(124.4)^2$	$(126.4)^2$
(μ)	356.9	353			
m_{e_R}	136	99.998	100–99.9	98.4–101.6	96.8–103.1
m_{Q1_L}	545.8	100.001	121–72	99.7–100.3	99.1–100.8
m_{Q3_L}	497	100.005	131–52	94.6–104.6	55.2–130.4
m_{u_R}	527.8	99.997	121–72	101–99	101.8–98.1
m_{t_R}	421.5	100.006	140–14	90.6–107.5	81.9–115.3
m_{b_R}	522.4	99.997	122–72	99.4–100.6	98.5–101.5
$-A_t$	494.5	100.009	11189	11 11	" "
A_b	795.2	100.002	10694	" "	" "

From RG running masses to pole masses

Ideal picture: $M^{pole} = \bar{m}(Q) \left[1 + \sum_{i,p} c_{ip} g_i^p(Q) \right] |_{Q=M^{pole}}$ m(Q) contains LL,NLL, etc; $g_i(Q)$ couplings and p pert. order c_i finite (non-log) parts of loop self-energy contributions in QCD: only one coupling g_S : in \overline{MS} scheme, step fction threshold corrections manageable in principle But in MSSM many different mass scales, different couplings... + mixing -> ambiguous threshold scales

Not yet fully satisfactory treatment of threshold corrections Different approaches exist, in Suspect practically:

- -include finite "threshold" corrections (to masses, couplings) explicitly (at $Q=Q_{EWSB}$ (unique, $\neq M_i^{pole}$))
- -Run full MSSM RGE (beyond (unique) scale $\sim Q_{EWSB}$)
- -Improvements should be possible in principle.

9. Practical implementation of threshold corrections

"SM" input:
$$G_F, M_Z, \alpha_{\rm em}^{-1}(M_Z)^{\overline{MS}}, \alpha_S(M_Z)$$
 $m_z^2 = M_Z^2 + {\rm Re}\,\Pi_{ZZ}^T(M_Z^2) = \frac{1}{2}(g_1^2 + g_2^2)\,v^2$
(NB $m_W, \sin^2\theta_W$ derived from this)

$$\tan \beta(m_Z) \equiv v_u/v_d, \quad Y_i = \frac{m_i}{v \sin \beta}$$

$$\bar{m}_f = M_f + \sum_f \overline{DR}(M_f)$$

$$\bar{m}_t = M_t + \sum_t (M_t) + (\Delta m_t)^{2-\text{loop, QCD}}$$

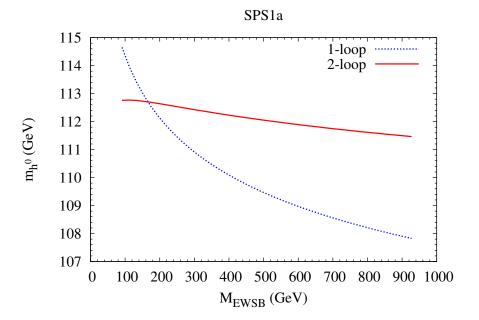
$$\hat{m}_b \equiv m_b(M_Z)_{\text{MSSM}}^{\overline{DR}} = \frac{\overline{m}_b}{1-\Delta_b}$$

 Δ_b MSSM corrections (resums $(\alpha_S \tan \beta)^n$ dependence)

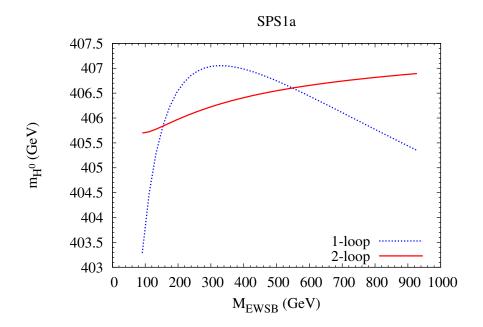
◆ All sparticles (≠ Higgses):

$$m_{\tilde{f},\tilde{\chi}} = M_{\tilde{f},\tilde{\chi}} + \Sigma_{\tilde{f},\tilde{\chi}}^{\mathsf{full 1-loop},\overline{DR}}(Q_{EWSB})$$

•Higgses: $M{h,H,A}$ incl. Σ_h^{full} 1-loop+lead 2-loop, $\overline{^{DR}}(Q_{EWSB})$



 m_h (above) and m_H (below) as a function of Q_{EWSB}



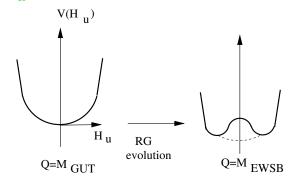
10. Electroweak sym. breaking issues in MSSM

Unescapable constraint: consistent electro-weak symmetry

breaking (EWSB)
$$SU(2)_L \times U(1)_Y \rightarrow U(1)_{em}$$

In MSSM: produced by RG evolution of $m_{H_u}^2(E)$, $m_{H_d}^2(E)$:

 \sim OK if $m_{H_u}^2(E) < 0$ by RG evolution $E_{GUT} \to E_{EWSB}$ ($\propto m_t^2$)



AND $|\mu|$, B determined by minimization of the scalar potential:

$$2\mu^2 = \tan(2\beta)(\hat{m}_{H_u}^2 \tan \beta - \hat{m}_{H_d}^2 \cot \beta - M_Z^2)$$

$$2B \mu = \sin 2\beta \; (\hat{m}_{H_u}^2 + \hat{m}_{H_d}^2 + 2\mu^2)$$

$$\tan \beta \equiv \frac{v_u}{v_d}$$
, $\hat{m}_{H_i}^2 = m_{H_i}^2 + \partial_{v_i} V_{loop}^{eff}(m_{sparticles}, \mu)$

 \rightarrow needs iteration for μ (but converges fastly)

 μ very sensitive to rad. corr., m_t ,... via RGE:

$$\frac{d(m_{H_u}^2)}{d \ln E} \propto m_t^2(m_{H_u}^2 + ...)$$

and
$$\mu^2 \sim -m_{H_u}^2 - m_Z^2/2$$
 (for $\tan \beta \gg 1$),

 $\bullet \mu$ enters everywhere in MSSM spectrum:

Higgses, $\tilde{\chi}^{\pm}, \tilde{\chi}^{0}$ (via Higgsinos $\tilde{H}_{u}, \tilde{H}_{d}$), \tilde{q}, \tilde{l} (via mixing)

Also: "CCB" minima (Charge and/or Color breaking) deeper than electroweak min. can appear

(CCB domains to exclude e.g if trilin. cpling A_i too large)

Alternative input in general MSSM

In some case (e.g. general MSSM, non-universal Higgs model) convenient to use EWSB consistency constraint to change input/output parameters:

e.g. Very convenient: $m_A(pole)$ and $\mu(Q_{EWSB})$ as input:

Other relevant parameters determined as

$$\bar{m}_A^2 = m_A^2(pole) + \Pi_{AA}$$
(1 loop) -tadpole +2-loop

$$m_{H_u}^2 = (\cos^2 \beta - \sin^2 \beta) \bar{m}_Z^2 / 2 + \cos^2 \beta \bar{m}_A^2 - \mu^2 - \partial_{v_u^2} V_{loop}^{eff}$$

$$m_{H_d}^2 = (\sin^2 \beta - \cos^2 \beta) \bar{m}_Z^2 / 2 + \sin^2 \beta \bar{m}_A^2 - \mu^2 - \partial_{v_d^2} V_{loop}^{eff}$$

NB also needs iteration since involves $V_{loop}^{eff}(m_{sparticles})$

Other possibilities: e.g. μ , $B\mu$ (GUT) input \rightarrow determine $\tan \beta$