Conception of prompt-gamma detector for online ion therapy monitoring

Maxime Jacquet

On behalf of the TIARA collaboration P.I: Sara Marcatili

Laboratoire de Physique Subatomique et Cosmologie

Email adress : maxime.jacquet@lpsc.in2p3.fr

Prompt Gamma Time Imaging Characterization of the detection pixel O Prompt-Gamma (PG) ion therapy monitoring

lon therapy:

- ✓ High ballistic precision
- × Uncertainties on ion range estimation

Online ion therapy monitoring:

- Real time Bragg Peak location by detection of secondary particles: Prompt Gamma
- ⇒ Improvement of treatment accuracy

Prompt Gamma Time Imaging

Characterization of the detection pixel \circ

Medycic experiments

Prompt-Gamma (PG) ion therapy monitoring

Ion therapy:

- ✓ High ballistic precision
- × Uncertainties on ion range estimation

PG features

- \times 1 < E_{P_G} < 10 MeV
- × 0.01 γ .p⁻¹.cm⁻¹
- ✓ PG spatial correlation
- ✓ $\langle T_{PG} \rangle < 1$ ps ⇒ Time correlation

Online ion therapy monitoring:

- Real time **Bragg Peak** location by detection of **secondary particles**: **Prompt Gamma**
- ⇒ Improvement of treatment accuracy

Prompt Gamma Time Imaging

Characterization of the detection pixel

Medycic experiments

Prompt-Gamma (PG) ion therapy monitoring

Ion therapy:

- ✓ High ballistic precision
- × Uncertainties on ion range estimation

PG features

- \times 1 < E_{P_G} < 10 MeV
- × 0.01 γ .p⁻¹.cm⁻¹
- ✓ PG spatial correlation
- ✓ $\langle T_{PG} \rangle < 1$ ps ⇒ Time correlation

Online ion therapy monitoring:

- Real time Bragg Peak location by detection of secondary particles: Prompt Gamma
- ⇒ Improvement of treatment accuracy

Time Of Flight(TOF) online monitoring

Characterization of the detection pixel

Medycic experiments

$T_{proton} + T_{PG}$ distribution measurement

- ✓ Monitoring in real time
- ✓ High detection efficiency
- \checkmark Neutron rejection by TOF
- $\boldsymbol{\mathsf{x}}$ TOF limited at the bunch width
- \Rightarrow Time resolution \approx **1 ns** rms

Prompt Gamma Time Imaging

Characterization of the detection pixel

Medycic experiments

PG Timing (PGT): concept

⁸⁰ # counts χ^2 / ndf 17.17/25 Constan 75.83 ± 2.75 32.53 ± 0.00 Mean Sigma 0.1012 ± 0.0040 50 40E 30 20 32.4 32.8 33.2 Time Of Flight (ns) Marcatili et al 2020 Phys. Med. Biol. 65 245033

$T_{proton} + T_{PG}$ distribution measurement

- ✓ Monitoring in real time
- High detection efficiency
- ✓ Neutron rejection by TOF
- × TOF limited at the bunch width
- \Rightarrow Time resolution pprox 1 ns rms

Increase PGT sensitivity:

- Single proton regime
- Diamond beam monitor

Time resolution: 101 ps rms

Introduction	Prompt Gamma Time Imaging	Characterization of the detection pixel	Medycic experiments
00	000		
Prompt (Gamma Time Imag	ging	

Goal: proton range estimation at the very beginning of the irradiation $(10^7-10^8 \text{ protons})$ in single proton regime

Goal: proton range estimation at the very beginning of the irradiation $(10^7-10^8 \text{ protons})$ in single proton regime

Diamond-based beam monitor

Time of flight Imaging ArRAy (TIARA):

 $\bullet~pprox$ 30 small-size Cerenkov radiators

Vertex Reconstruction:

 $\mathsf{T}_{\mathsf{Start}} - \mathsf{T}_{\mathsf{Stop}} = \mathsf{T}_{\mathsf{proton}} + \mathsf{T}_{\mathsf{PG}}$

Medycic experiments

Simulation: Detection of a proton range shift

Longitudinal shift sensitivity

Medycic experiments

Simulation: Detection of a proton range shift

Transverse shift sensitivity

Introduction	Prompt Gamma Time Imaging	Characterization of the detection pixel	Medycic experiments
	00●	O	O
Simulati	on results		

	Longitudinal shift		Transverse shift
Number of protons	10 ⁷	10 ⁸	10 ⁸
Number of PG detected	3×10^3	3×10^4	3×10^4
Expected sensitivity at 1σ (mm)	2	1	1
Expected sensitivity at 2σ (mm)	3	1	2

Jacquet M et al 2021 Phys. Med. Biol. 66 135003

A time-of-flight-based reconstruction for real-time prompt-gamma imaging in proton therapy

https://doi.org/10.1088/1361-6560/ac03ca

Prompt Gamma Time Imaging

Characterization of the detection pixel

Medycic experiments

Characterization of TIARA pixel detector

Prompt Gamma Time Imaging

Characterization of the detection pixel

Medycic experiments

Characterization of TIARA pixel detector

SiPM photon counting mode

Prompt Gamma Time Imaging

Characterization of the detection pixel

Medycic experiments

Characterization of TIARA pixel detector

SiPM photon counting mode

Intrinsic SiPM time resolution

Prompt Gamma Time Imaging

Characterization of the detection pixel

Medycic experiments

Characterization of TIARA pixel detector

SiPM photon counting mode

Time resolution of Cerenkov + SiPM with 60 Co

Intrinsic SiPM time resolution

Experiments: performance of our detection system

Experiments: performance of our detection system

Experiment 1 of June 2021:

- 60 MeV proton beam irradiation
- 1 cm thick PMMA

Experiments: performance of our detection system

Experiment 1 of June 2021:

- 60 MeV proton beam irradiation
- 1 cm thick PMMA

