

Liberté Égalité Fraternité

MODÉLISATION DE L'ÉVOLUTION DES DOMMAGES PRÉCOCES RADIO-INDUITS AU SEIN D'UNE POPULATION CELLULAIRE

Yann THIBAUT (IRSN/PSE-SANTE/SDOS/LDRI), yann.thibaut@irsn.fr

- Dirigé par Sébastien INCERTI (CNRS/IN2P3/CENBG)
- Encadré par Yann PERROT (IRSN/PSE-SANTE/SDOS/LDRI)

LES EFFETS SECONDAIRES DES RADIOTHÉRAPIES

Maximiser les effets radio-induits dans le volume cible.

Minimiser les effets radio-induits dans les tissus sains.

LES EFFETS SECONDAIRES DES RADIOTHÉRAPIES

Maximiser les effets radio-induits dans le volume cible.

Minimiser les effets radio-induits dans les tissus sains.

RadiobiOlogie des Systèmes Intégrés pour l'optimisation des traitements utilisant des rayonnements ionisants et évaluation du RISque associé ROSIRIS

LES EFFETS SECONDAIRES DES RADIOTHÉRAPIES

Maximiser les effets radio-induits dans le volume cible.

Minimiser les effets radio-induits dans les tissus sains.

RadiobiOlogie des Systèmes Intégrés pour l'optimisation des traitements utilisant des rayonnements ionisants et évaluation du RISque associé ROSIRIS

Une multiplicité de traitements :

- Différentes particules (Rayons X et γ, e⁻, p⁺, lons).
- Différentes énergies.
- Différents débits de Dose.
- Différents fractionnements de Dose.

LES EFFETS SECONDAIRES DES RADIOTHÉRAPIES

Maximiser les effets radio-induits dans le volume cible.

Minimiser les effets radio-induits dans les tissus sains.

RadiobiOlogie des Systèmes Intégrés pour l'optimisation des traitements utilisant des rayonnements ionisants et évaluation du RISque associé

ROSIRIS

Une multiplicité de traitements :

- Différentes particules (Rayons X et γ, e⁻, p⁺, lons).
- Différentes énergies.
- Différents débits de Dose.
- Différents fractionnements de Dose.

Différentes efficacités biologiques

L'ÉVALUATION DE L'EFFICACITÉ BIOLOGIQUE DU RAYONNEMENT

Pour quantifier l'efficacité biologique : l'Efficacité Biologique Relative

$$\mathsf{EBR} = \frac{D_{ref}}{D_{ion}}$$

- Modèle conçu à des fins de traitement.
- Basé sur la survie clonogénique.

M. Krämer, NIM-B. Vol.267 6 (2009)

L'ÉVALUATION DE L'EFFICACITÉ BIOLOGIQUE DU RAYONNEMENT

Pour quantifier l'efficacité biologique : l'Efficacité Biologique Relative

$$\mathsf{EBR} = \frac{D_{ref}}{D_{ion}}$$

- Modèle conçu à des fins de traitement.
- Basé sur la survie clonogénique.

M. Krämer, NIM-B. Vol.267 6 (2009)

L'ÉVALUATION DE L'EFFICACITÉ BIOLOGIQUE DU RAYONNEMENT

Pour quantifier l'efficacité biologique : l'Efficacité Biologique Relative

 $\mathsf{EBR} = \frac{D_{ref}}{D_{ion}}$

Modèle conçu à des fins de traitement.

Heures

Basé sur la survie clonogénique.

Une approche AOP :

Seconde

Moléculaire

Mois

CHO

X-ray

- 12C 11 MeV/u

▲ ¹²C 266 4 MeV/L

ROSIRIS EBR Multiparamétrique Arrêt fonctionnel Sénescence Cycle cellulaire Signature Transcriptomique Interaction Cellulaire

Cinétique des effets des rayonnements ionisants sur les tissus

Jours

LES OBJECTIFS DU TRAVAIL DE THÈSE

Passer de la caractérisation de la topologie des dommages radio-induits à l'ADN calculés à l'échelle d'une cellule aux temps précoces à la description de l'état du tapis cellulaire à des temps plus tardifs.

LES OBJECTIFS DU TRAVAIL DE THÈSE

Passer de la caractérisation de la topologie des dommages radio-induits à l'ADN calculés à l'échelle d'une cellule aux temps précoces à la description de l'état du tapis cellulaire à des temps plus tardifs.

Un bond dans l'échelle spatiale de la modélisation :

LES OBJECTIFS DU TRAVAIL DE THÈSE

Passer de la caractérisation de la topologie des dommages radio-induits à l'ADN calculés à l'échelle d'une cellule aux temps précoces à la description de l'état du tapis cellulaire à des temps plus tardifs.

Un bond dans l'échelle spatiale de la modélisation :

Un bon dans l'échelle temporelle :

LES OBJECTIFS DU TRAVAIL DE THÈSE

Passer de la caractérisation de la topologie des dommages radio-induits à l'ADN calculés à l'échelle d'une cellule aux temps précoces à la description de l'état du tapis cellulaire à des temps plus tardifs.

Un bond dans l'échelle spatiale de la modélisation :

Un bon dans l'échelle temporelle :

Passer à l'échelle biologique : 🔺

- Modéliser des données observables expérimentalement.
- Ajustement des modèles déjà développés grâce aux données expérimentales.

MATÉRIEL ET MÉTHODE

Une chaine de simulation nanodosimétrique basée sur **GEANT4-DNA** pour simuler la topologie des dommages à l'échelle cellulaire aux temps précoces post irradiation.

Calcul des dommages précoces radio-induits en modélisation

MATÉRIEL ET MÉTHODE

Une chaine de simulation nanodosimétrique basée sur **S GEANT4-DNA** pour simuler la topologie des dommages à l'échelle cellulaire aux temps précoces post irradiation.

Calcul des dommages précoces radio-induits en modélisation

Simulation de l'étape physique et chimique permise par les outils fournis par Geant4-DNA (S. Meylan, *Sci. Rep.*, 2017).

MATÉRIEL ET MÉTHODE

Une chaine de simulation nanodosimétrique basée sur des dommages à l'échelle cellulaire aux temps précoces post irradiation.

Calcul des dommages précoces radio-induits en modélisation

 Simulation de l'étape physique et chimique permise par les outils fournis par Geant4-DNA (S. Meylan, Sci. Rep., 2017).

 Création de géométrie réaliste grâce au logiciel « DNAFabric » développé à l'IRSN (S. Meylan, *Sci. Rep.*, 2017).

MATÉRIEL ET MÉTHODE

Une chaine de simulation nanodosimétrique basée sur des dommages à l'échelle cellulaire aux temps précoces post irradiation.

Calcul des dommages précoces radio-induits en modélisation

post irradiation.
Simulation de l'étape physique et chimique permise par les outils fournis

- chimique permise par les outils fournis par Geant4-DNA (S. Meylan, *Sci. Rep.*, 2017).
- Création de géométrie réaliste grâce au logiciel « DNAFabric » développé à l'IRSN (S. Meylan, *Sci. Rep.*, 2017).
- Définition d'un dommage.
- Mise en forme de la topologie des dommages au format SDD (J. Schuemann, *Rad. Res.*, 2018)

MATÉRIEL ET MÉTHODE

Pour améliorer la modélisation de la topologie des dommages radio-induits, on fait évoluer les modèles géométriques de noyaux cellulaires.

Précédente géométrie (Alea-HC-48) :

- Taux global d'hétérochromatine : 48%.
- Répartition aléatoire des niveaux de compaction de la chromatine.
- Validé avec les données de la littérature (N. Tang, Med. Phys., 2019).

Modèle de noyau endothélial

MATÉRIEL ET MÉTHODE

IRS

Pour améliorer la modélisation de la topologie des dommages radio-induits, on fait évoluer les modèles géométriques de noyaux cellulaires.

- Précédente géométrie (Alea-HC-48) :
- Taux global d'hétérochromatine : 48%.
- Répartition aléatoire des niveaux de compaction de la chromatine.
- Validé avec les données de la littérature (N. Tang, Med. Phys., 2019).

Modèle de noyau endothélial

- Nouvelle géométrie (Iso-HC-62) :
 - Répartition des niveaux de compaction de la chromatine selon la théorie isochore (J. Pačes, *Gene*, 2004 et M. Costantini, *J. Mol. Evol.*, 2017).

Profil GC du chromosome 37

• Taux global d'hétérochromatine : 62%.

MATÉRIEL ET MÉTHODE

Pour améliorer la modélisation de la topologie des dommages radio-induits, on fait évoluer les modèles géométriques de noyaux cellulaires.

- Précédente géométrie (Alea-HC-48) :
- Taux global d'hétérochromatine : 48%.
- Répartition aléatoire des niveaux de compaction de la chromatine.
- Validé avec les données de la littérature (N. Tang, Med. Phys., 2019).

Géométrie étalon (Alea-HC-62) :

- Taux global d'hétérochromatine : 62%.
- Répartition aléatoire des niveaux de compaction de la chromatine.
- Développé pour évaluer l'impact de la nouvelle géométrie isochore.

- Nouvelle géométrie (Iso-HC-62) :
 - Répartition des niveaux de compaction de la chromatine selon la théorie isochore (J. Pačes, *Gene*, 2004 et M. Costantini, *J. Mol. Evol.*, 2017).

Profil GC du chromosome 37

• Taux global d'hétérochromatine : 62%.

RÉSULTATS ET DISCUSSIONS

Pour mesurer l'impact de cette nouvelle géométrie sur le calcul des dommages radio-induits, des simulations ont été menées sur les différentes géométries évoquées :

Comparaison du nombre moyen de DSB/event/Gbp entre géométries

• La géométrie isochore présente un nombre moyen de DSB/event/Gbp plus élevé.

RÉSULTATS ET DISCUSSIONS

Pour mesurer l'impact de cette nouvelle géométrie sur le calcul des dommages radio-induits, des simulations ont été menées sur les différentes géométries évoquées :

Comparaison du nombre moyen de DSB/event/Gbp entre géométries

Localisation des SB dans la géométrie isochore

- La géométrie isochore présente un nombre moyen de DSB/event/Gbp plus élevé.
- La géométrie isochore présente plus de dommages dans les domaines les plus décondensés.

MATÉRIEL ET MÉTHODE

Les différences de réponses entre cellules d'une même population cellulaire, ayant été exposées à la même qualité de faisceau, peut provenir de la variation d'énergie impartie à chaque cellule (G. Gruel, *Plos One*, 2016).

MATÉRIEL ET MÉTHODE

Les différences de réponses entre cellules d'une même population cellulaire, ayant été exposées à la même qualité de faisceau, peut provenir de la variation d'énergie impartie à chaque cellule (G. Gruel, *Plos One*, 2016).

La distribution des évènements au sein de la population cellulaire doit se faire en suivant le formalisme de la Microdosimétrie (A. Kellerer, *Rad. Env. Biophys.*, 1975).

- Les différences de réponses entre cellules d'une même population cellulaire, ayant été exposées à la même qualité de faisceau, peut provenir de la variation d'énergie impartie à chaque cellule (G. Gruel, *Plos One*, 2016).
- La distribution des évènements au sein de la population cellulaire doit se faire en suivant le formalisme de la Microdosimétrie (A. Kellerer, *Rad. Env. Biophys.*, 1975).
- Élaboration d'une base de données de spectres microdosimétriques sur une large gamme d'énergie (1 keV à 20 MeV) pour différents types de particules (e⁻, p⁺, α).

- Les différences de réponses entre cellules d'une même population cellulaire, ayant été exposées à la même qualité de faisceau, peut provenir de la variation d'énergie impartie à chaque cellule (G. Gruel, *Plos One*, 2016).
- La distribution des évènements au sein de la population cellulaire doit se faire en suivant le formalisme de la Microdosimétrie (A. Kellerer, *Rad. Env. Biophys.*, 1975).
- Élaboration d'une base de données de spectres microdosimétriques sur une large gamme d'énergie (1 keV à 20 MeV) pour différents types de particules (e⁻, p⁺, α).
- Interpolation entre les spectres de la base de données pour le calcul des spectres non-simulés.

- Les différences de réponses entre cellules d'une même population cellulaire, ayant été exposées à la même qualité de faisceau, peut provenir de la variation d'énergie impartie à chaque cellule (G. Gruel, *Plos One*, 2016).
- La distribution des évènements au sein de la population cellulaire doit se faire en suivant le formalisme de la Microdosimétrie (A. Kellerer, *Rad. Env. Biophys.*, 1975).
- Élaboration d'une base de données de spectres microdosimétriques sur une large gamme d'énergie (1 keV à 20 MeV) pour différents types de particules (e⁻, p⁺, α).
- Interpolation entre les spectres de la base de données pour le calcul des spectres non-simulés.
- Combinaison des spectres, selon la qualité du faisceau irradiant, pour obtenir le spectre f₁(z) du tapis cellulaire.

- Les différences de réponses entre cellules d'une même population cellulaire, ayant été exposées à la même qualité de faisceau, peut provenir de la variation d'énergie impartie à chaque cellule (G. Gruel, *Plos One*, 2016).
- La distribution des évènements au sein de la population cellulaire doit se faire en suivant le formalisme de la Microdosimétrie (A. Kellerer, *Rad. Env. Biophys.*, 1975).
- Élaboration d'une base de données de spectres microdosimétriques sur une large gamme d'énergie (1 keV à 20 MeV) pour différents types de particules (e⁻, p⁺, α).
- Interpolation entre les spectres de la base de données pour le calcul des spectres non-simulés.
- Combinaison des spectres, selon la qualité du faisceau irradiant, pour obtenir le spectre f₁(z) du tapis cellulaire.
- Distribution des évènements un à un dans le tapis.

RÉSULTATS ET DISCUSSIONS

- La robustesse de la méthode a été éprouvée grâce à une irradiation neutron de 14,5 MeV menée sur l'irradiateur AMANDE de Cadarache dans le cadre du projet MODELL (CNES).
 - Multiplicité du type de particules secondaires (e⁻, p⁺, α).
 - Grande dynamique du spectre en énergie.
 - Angles d'entrée dans le noyau variés.
 - Espace des phase caractérisé.

Spectres en énergie simulés par MC

RÉSULTATS ET DISCUSSIONS

- La robustesse de la méthode a été éprouvée grâce à une irradiation **neutron** de 14,5 MeV menée sur l'irradiateur AMANDE de Cadarache dans le cadre du projet MODELL (CNES).
- Multiplicité du type de particules secondaires (e⁻, p⁺, α).
- Grande dynamique du spectre en énergie.
- Angles d'entrée dans le noyau variés.
- Espace des phase caractérisé.

Comparaison des spectres f(z,D=20 mGy) simulés et calculés au niveau des noyaux

IRSN

Spectres en énergie simulés par MC

RÉSULTATS ET DISCUSSIONS

- La robustesse de la méthode a été éprouvée grâce à une irradiation neutron de 14,5 MeV menée sur l'irradiateur AMANDE de Cadarache dans le cadre du projet MODELL (CNES).
 - Multiplicité du type de particules secondaires (e⁻, p⁺, α).
 - Grande dynamique du spectre en énergie.
 - Angles d'entrée dans le noyau variés.
 - Espace des phase caractérisé.

Comparaison des spectres en énergie simulés et calculés

PERSPECTIVES

- La distribution réaliste des évènements à chaque cellule du tapis doit maintenant permettre la distribution réaliste des dommages dans le tapis cellulaire.
 - Nécessite de lier les caractéristique d'un évènement à une topologie de dommage.
 - Calcul de la base de donnée de résultats nanodosimétrique en cours.

PERSPECTIVES

- La distribution réaliste des évènements à chaque cellule du tapis doit maintenant permettre la distribution réaliste des dommages dans le tapis cellulaire.
 - Nécessite de lier les caractéristique d'un évènement à une topologie de dommage.
 - Calcul de la base de donnée de résultats nanodosimétrique en cours.

Permettra de fournir une population d'entrée suffisante pour alimenter des modèles de réparation des dommages précoces à l'ADN.

PERSPECTIVES

- La distribution réaliste des évènements à chaque cellule du tapis doit maintenant permettre la distribution réaliste des dommages dans le tapis cellulaire.
- Nécessite de lier les caractéristique d'un évènement à une topologie de dommage.
- Calcul de la base de donnée de résultats nanodosimétrique en cours.
- Permettra de fournir une population d'entrée suffisante pour alimenter des modèles de réparation des dommages précoces à l'ADN.
- Projet BIORADIII (Geant4-DNA).
- Quelques exemples de modèles (paramétriques et semi-paramétriques) :

PERSPECTIVES

- La distribution réaliste des évènements à chaque cellule du tapis doit maintenant permettre la distribution réaliste des dommages dans le tapis cellulaire.
- Nécessite de lier les caractéristique d'un évènement à une topologie de dommage.
- Calcul de la base de donnée de résultats nanodosimétrique en cours.
- Permettra de fournir une population d'entrée suffisante pour alimenter des modèles de réparation des dommages précoces à l'ADN.
- Projet BIORADIII (Geant4-DNA).
- Quelques exemple de modèles (paramétriques et semi-paramétriques) :

Image de foci produite à l'IRSN

MERCI DE VOTRE ATTENTION

