AG GDR Mi2B

Modelisation of light transmission through surfaces with optical coating in Geant4

Laurie Cappellugola

CONTENTS

- I. Introduction of TOF-PET
- II. Goal of ClearMind project
- III. Analytical simulation of the impact of the thin layer on a visible photon transmission
- IV. Implementation of interferences and frustrated transmission in Geant4
- V. Experimental studies on Photek test cells

I. Introduction of TOF-PET

TOF-PET

 Taking care of the difference between the arrival time of the two photons

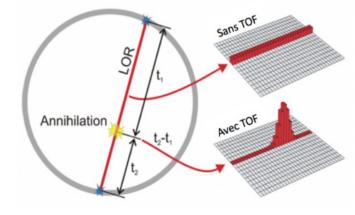
- Needing fast detectors
- Improving SNR or reducing the patient dose
- 10 ps challenge

28/09/21

$$c = 30 \, cm \, . \, ns^{-1}$$

if $CTR = 10 \, ps$

then $\rightarrow \Delta l = 1,5 mm$


 $\Delta l = c \frac{\Delta t}{2} \pm c \frac{CTR}{2}$

 $\Delta t = (t_2 - t_1) \pm CTR$

Laurie Cappellugola Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

4

II. Goal of ClearMind project

Goal of ClearMind project

- Collaboration between CEA-IRFU, IJCLab and CPPM
- New PET detector with improved spatiotemporal resolution
 - PbWO₄ crystal: Cerenkov (21 photon/event) and scintillation (200 photon/event) production, with fast constants (~2 ns)
 - Deposit the photoelectric layer directly on the crystal : scintronic crystal
 - Use MicroChannel Plate (MCP)
 - Measure DOI

28/09/21

Laurie Cappellugola Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

MCP-PMT

PbWO₄ crystal

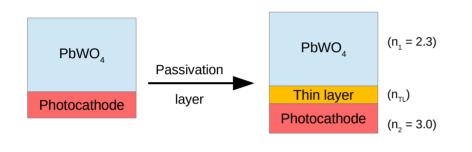
scintilation

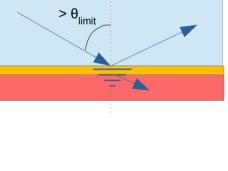
e, 423 keV

X

7, 511 keV

cherenkov


III. Analytical simulation of the impact of the thin layer on a visible photon transmission


Passivation layer introduction

- Lead tungstate alters the photocathode → Thin passivation layer needed
- Generates interference phenomenon at the interfaces

 For θ > θ_{limit} an evanescent wave is produced and allows frustrated transmission

If $n_1 > n_2$:

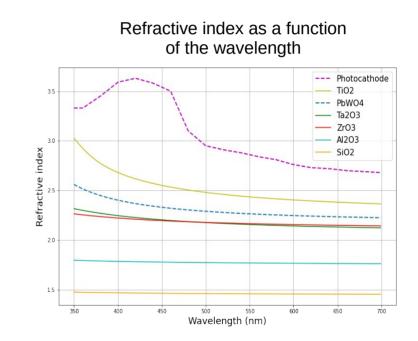
$$\theta_{limit} = \arcsin\left(\frac{n_2}{n_1}\right)$$

28/09/21

Formulas of reflection and transmission through a thin layer

			Reflection	Transmission		R and T
Simple Interface	Normal incidence		$r_{ij,TE} = r_{ij,TM} = \frac{n_i - n_j}{n_i + n_j}$	$t_{ij,TE} = t_{ij,TM} = \frac{2n_i}{n_i + n_j}$	Fresnel coefficients	$R = r ^2$
	Oblique incidence	$\theta_1 < \theta_{limit}$	$r_{ij, TE} = \frac{n_i \cos \theta_i - n_j \cos \theta_j}{n_i \cos \theta_i + n_j \cos \theta_j}$	$t_{ij, TE} = \frac{2 n_i \cos \theta_i}{n_i \cos \theta_i + n_j \cos \theta_j}$	r_{TE} +1= t_{TE}	Λ -μ ⁻
		0 ₁ -0 _{limt}	$r_{ij,TM} = \frac{n_i \cos \theta_j - n_j \cos \theta_i}{n_i \cos \theta_j + n_j \cos \theta_i}$	$t_{ij, TM} = \frac{2 n_i \cos \theta_i}{n_i \cos \theta_j + n_j \cos \theta_i}$	$n_1(1-r_{TM})=n_2t_{TM}$	$T_{I} = \frac{n_{end}}{n_{beg}} t ^{2}$
		$\theta_1 > \theta_{limit}$	Total	reflection		
Thin layer	Normal incidence		$r = \frac{r_{12} + r_{23} \cdot e^{2i\beta}}{1 + r_{12} \cdot r_{23} \cdot e^{2i\beta}}$	$t = \frac{t_{12}t_{23}e^{i(k_2-k_3)d}}{1+r_{12}r_{23}e^{2i\beta}} \approx \frac{t_{12}t_{23}e^{i\beta}}{1+r_{12}r_{23}e^{2i\beta}}$	$\beta = k_2 d$ $k_2 = \frac{2\pi}{\lambda_2} = n_2 \frac{2\pi}{\lambda_0} = \frac{n_2 2\pi}{n_1 \lambda_1}$	$R+T_{I} \neq 1$
	Oblique incidence	$\theta_1 < \theta_{limit}$	$r = \frac{r_{12} + r_{23} \cdot e^{2i\beta}}{1 + r_{12} \cdot r_{23} \cdot e^{2i\beta}}$	$t = \frac{t_{12} t_{23} e^{i\beta}}{1 + r_{12} r_{23} e^{2i\beta}}$	$\beta = k_2 d \cos \theta_2$	$T_{p} = \frac{n_{e} \cos \theta_{e}}{n_{b} \cos \theta_{b}} t ^{2}$
		$\theta_1 > \theta_{limt}$	$r = \frac{r_{12} + r_{23} \cdot e^{2\beta}}{1 + r_{12} \cdot r_{23} \cdot e^{2\beta}}$	$t = \frac{t_{12}t_{23}e^{\beta}}{1 + r_{12}r_{23}e^{2\beta}}$	$\beta = -k_0 d \gamma$	$P_{b}\cos\theta_{b}$
			$\underline{\bigwedge} \qquad \text{Taking } r_{_{\text{I}}} \text{ for simple interfa}$ $r_{_{12,TE}} = \frac{n_1 \cos \theta_1 - i y}{n_1 \cos \theta_1 + i y}$	ace et $\theta < \theta_{\text{innut}}$ replacing $n_2 \cos(\theta_2)$ by $i\gamma$ $t_{12,TE} = \frac{2n_1 \cos \theta_1}{n_1 \cos \theta_1 + i \gamma}$	$k_0 = \frac{2\pi}{\lambda_0}$	$R+T_p=1$
			$r_{12,TM} = \frac{n_1 i y - n_2^2 \cos \theta_1}{n_1 i y + n_2^2 \cos \theta_1}$	$t_{12,TM} = \frac{2 n_1 n_2 \cos \theta_1}{n_1 i \ j + n_2^2 \cos \theta_1}$	$\gamma = \sqrt{n_1^2 \sin \theta_1^2 - n_2^2}$	

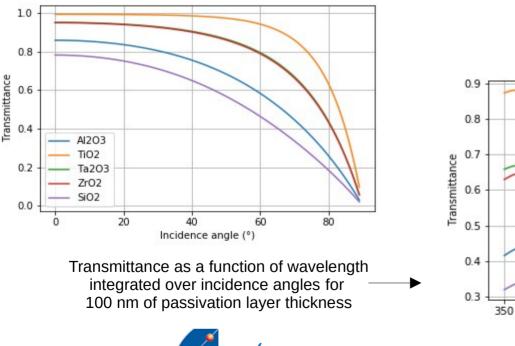
28/09/21


CPPN

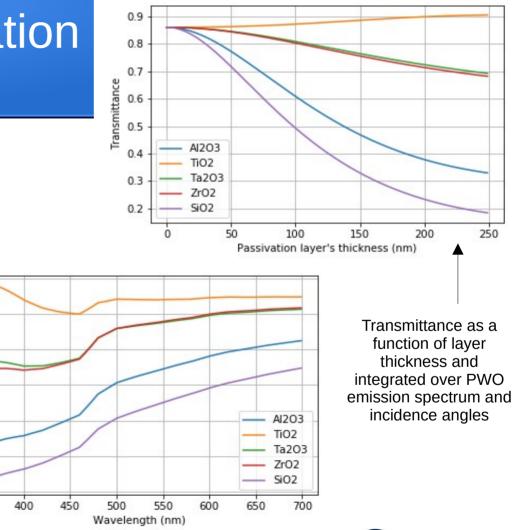
Aix*Marseille Laurie Cappellugola Université Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

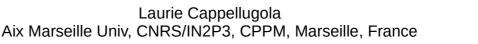
Comparison of passivation layer materials

- Comparison of:
 - Zirconium oxide, ZrO₃
 - Tantalum oxide, Ta₂O₃
 - Aluminium oxide, Al₂O₃
 - Titanium oxide, TiO₂
 - Silicon oxide/Quartz, SiO2
- No frustrated transmission with TiO₂



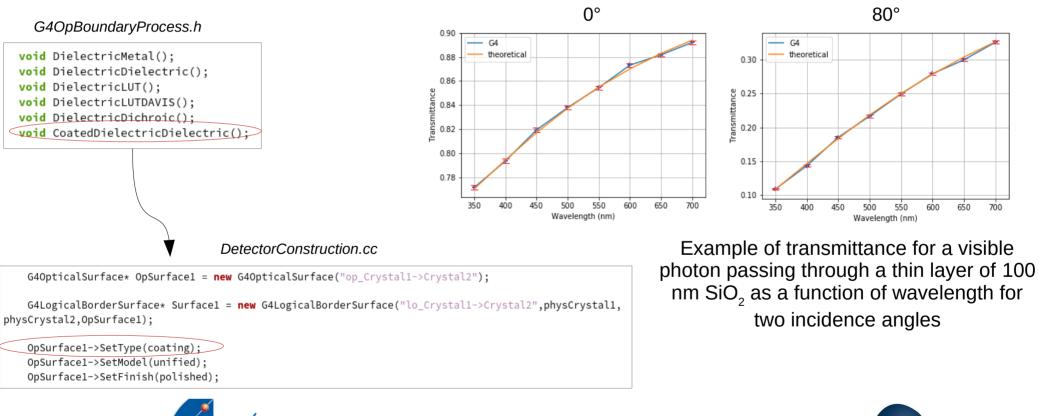
Comparison of passivation layer materials


Transmittance as a function of incidence angle and integrated over PWO emission spectrum for 100 nm of passivation layer thickness

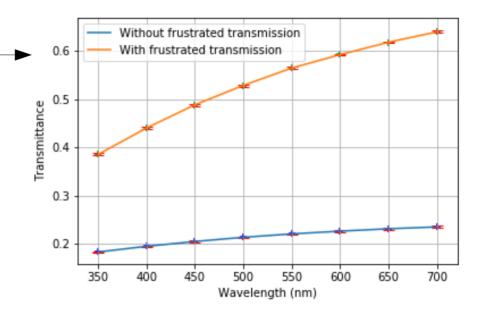

PARTICULES DE MARS

Aix*Marseille

universite


IV. Implementation of interferences and frustrated transmission in Geant4

Integration of interferences and frustrated transmission due to thin layer, in Geant4

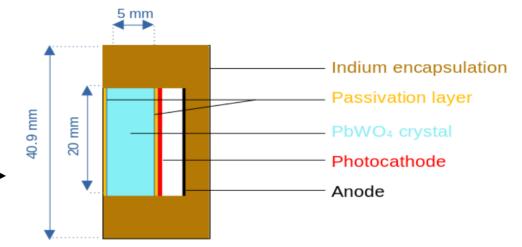


What is the importance of frustrated transmission through a the thin layer?

Transmittance through a thin layer as a function of wavelength integrated over incidence angles, with and without frustrated transmission

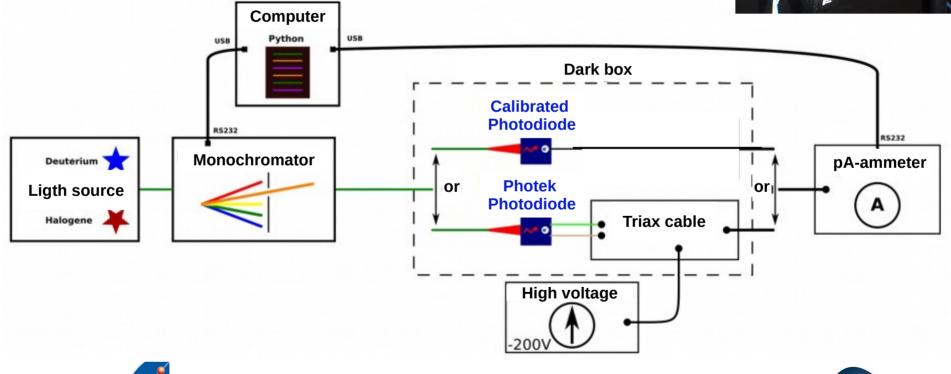
- Simulation of transmittance through thin layer with frustrated transmission for large angles (orange curve) and with total reflection for large angles (blue curve)
- The transmittance is **two time increased** thanks to frustrated transmission

V. Experimental studies on Photek test cells

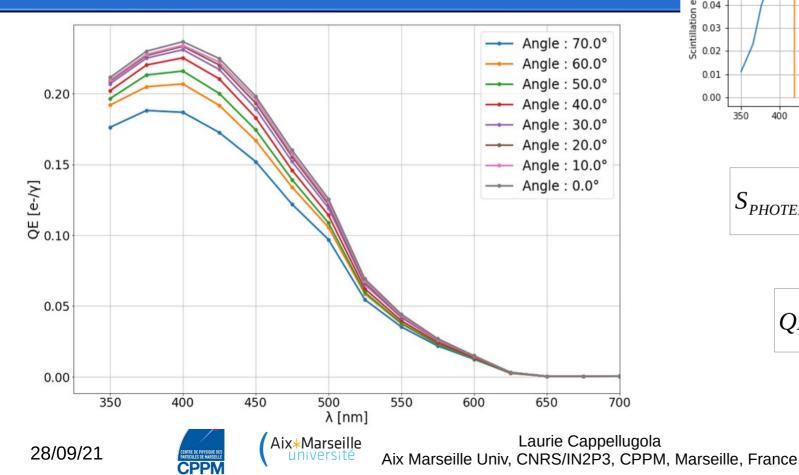


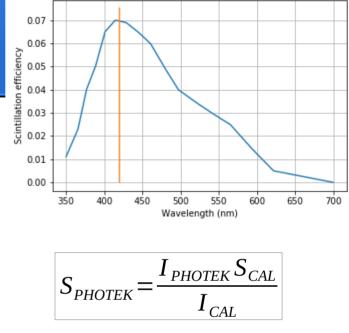
Experimental studies on Photek test cells

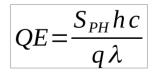
- Photek test cells:
 - SiO₂, without thin layer
 - PbWO₄ 2018
 - PbWO₄ 2021
- Beam of 0.8 mm diameter and 3° maximum divergence


28/09/21

Measurement setup


ENTRE DE PHYSIQUE Particules de marse


CPPN



Quantum efficiency of Photek photocathode as function of wavelength

Conclusion and perspectives

- The **theoretical description** of the passivation layer shows an impact on the transmittance of visible photons
- This theretical model as been intergrated in **Geant4** to describe an interface composed with thin layer
- Measurement are carried on at CEA-Saclay for assessement

Thank you for your attention

