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Lydia Maigne - AG GDR Mi2b - Thème Calcul - 28/09/21 2

CPPM Marseille
LPSC Grenoble
IP2I Lyon
LPC Clermont
IJCLab, Orsay
IPHC Strasbourg
CREATIS Lyon
LATIM Brest
IRCM Montpellier

UC Davis
NIRS Japon



Modeling of light 
transport in scintillation 

detectors
Geant4 RealSurface 1.0

GATE Davis LUT model
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1°) Detector developments



1°) Detector developments
o 2 simula)on modes
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Full Monte Carlo tracking of 
emitted optical photons

Response of the photodec8on components 
simulated by a specific module



1°) Detector developments
Optical photon tracking and SiPM
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u Photons many times reflected on the surface of scintillation crystal
u Process affected by specific surface treatment and reflector materials
u Manufacturing of scintillation crystals is not a standardized process
u Optical simulations based on measured crystal surfaces LSO and LYSO crystal

layers with reflectors



1°) Detector developments
Optical photon tracking and SiPM
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u Integrating reflector and surface finish
u Reflectors: ESR, Teflon

u Coupling: Air, optical grease

u Surface finish: Polished, Rough

Standalone user interface

Trigila C, Moghe E and Roncali E 2021 Standalone application to generate custom reflectance
Look-Up Table for advanced optical Monte Carlo simulation in GATE/Geant4 Med Phys.



oLarge monolithic scintillation detector for clinical PET systems

ogain insight into
ophysical processes difficult or impossible to measure experimentally, especially DoI. 
o influence of Compton scattered events, 
o influence of intrinsic 176Lu radiation of the scintillator, 
o influence of test-equipment, e.g. collimators or housing.
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1°) Detector developments
Op3cal photon tracking and SiPM



oIncreasing use of SiPM in PET imaging
o Specific digitizer modules for analog (aSiPM) and digital SiPMs

(dSiPM)
o aSiPM: takes into account aSiPM saturation and various sources of noise such

as dark counts, crosstalks, afterpulses, after-crosstalks and signal white noise 

o dSiPM: (Philips Digital Photon Counter)
o takes into account noise sources (dark noise and optical crosstalk), the PDE of the 

sensor, and the specific trigger and validation logic.
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Mehadji B 2020 ModélisaMon Monte Carlo d’une caméra Compton basée sur l’uMlisaMon de détecteurs à scinMllaMon sensibles à la posiMon 
couplés à des SiPM PhD Thesis Aix-Marseille Université J. Instrum.

Lenz M 2020 Design and characterisaMon of an MRI compaMble human brain PET 
insert by means of simulaMon and experimental studies
PhD Thesis Bergische Universität Wuppertal

1°) Detector developments
Op3cal photon tracking and SiPM



ouse of ultra-fast (10 ps) Cerenkov emission for TOF PET detectors = alternative to 
traditional time triggering on scintillation photons

o very low number of Cerenkov photons produced by each gamma interaction in the 
Cerenkov radiator (around 15–20 per photoelectric interaction for BGO) 

oCerenkov production and transport in the crystal
o direction of the initial Cerenkov photons,
o contribution of Cerenkov photons to the detector timing resolution.
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For 75000 photoelectric events

Ariño-Estrada G, Roncali E, Selfridge A R, Du J, Glodo J, Shah K S and 
Cherry S R 2020 Study of Čerenkov light emission in the semiconductors
TlBr and TlCl for TOF-PET IEEE Trans. Rad. Plasma Med. Sci. 1

1°) Detector developments
Cerenkov-based TOF
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o Principle
o Classic gamma camera: 

o inverse proportionality relationship between sensitivity and spatial resolution
o Collimator thickness to be adjusted to the gamma energy

o Compton Camera
o Electronic collimation: at least 2 detectors

o Compton scattering in the 1st detector (scatterer)
o Photoelectric absorption in the 2nd detector (absorber)

o Calculation of the scattering angle of the Compton interaction
o Reconstruction of a cone with the source position located on cone surface
o Intersection of the cones calculated for different gammas emitted from the source lead to the definition

of the source position

o Challenges
o Higher efficiency: every gamma photon reaching the camera has a probability to be scattered
o Image resolution depends only on detectors involved
o Wider range of gamma energies
o Reconstruction through cone:=> 3D activity map obtained without moving the camera

1°) Detector developments
Compton camera modules



oMC framework adapted to different detector geometry
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u Design, optimize and predict the potentiality of the system
u Understand experimental data
u Study background rejection techniques
u Test reconstruction algorithms

1°) Detector developments
Compton camera modules

CCMod: a GATE module for Compton camera imaging simula9on - h<ps://doi.org/10.1088/1361-6560/ab6529



2°) Clinical imaging systems
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Preclinical and clinical PET systems Preclinical and clinical SPECT systems

Simulated cameras for 10 years

THIDOS compact mobile 
γ-camera for absorbed
radiaTon dose control in 
IRT. 

Trigila C 2019 Development of a portable gamma imaging system for absorbed radia:on 
dose control in molecular radiotherapy PhD Thesis, Université Paris-Saclay 
(hEps://tel.archives-ouvertes.fr/tel-02475983/document)



3°) Data analysis and Python

oPython: easy to learn & easy to use
oNumPy, Matplotlib, uproot…
o read/write data in NPY file format 

oOpensource set of tools
o convert or resize images in various file formats, 
o convert DICOM RT structures,
omanage phase-space files
o analyze dose map, with DVH (Dose Volume Histogram) or gamma-index for example.

oTo a long term development
oPython wrapping : pybind11
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h=ps://github.com/OpenGATE/GateTools



4°) Complex geometries

oTessellated mesh geometries
o STL files
oAuto-contouring SPECT gamma cam

moaon
oUsed for abenuaaon and emission

phantoms
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Kayal G, Chauvin M, Mora-Ramirez E, Struelens L and Bardies M 2020b Implementation of SPECT auto-contouring
detector motion in GATE Monte Carlo simulation for 177Lu and 131I molecular radiotherapy (MRT) dosimetry Eur J 
Nucl Med Mol Imaging 47 1–753 

Zvolský M, Schreiner N, Seeger S, Schaar M, Rakers S and Rafecas M 2019a Digital zebrafish phantom based on 
micro-CT data for imaging research IEEE Nuc. Sci. Symp. and Med. Imaging Conf.(NSS/MIC) 2019 1–2 



4°) Complex geometries

oTessellated mesh cell popula)ons
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(a)                                                           (b)
Figure 1. (a) Reverse-phased microscopy imaging of a spheroid (SK-MEL 28 type) of 
550±40 µm in diameter (b) Fluorescent confocal microscopy of a spheroid (SK-MEL 

28 type)

• model large three-dimensional cell populaTons
• independent deformable cells described with their nucleus, 

cytoplasm and membranes
• force law systems to manage cell-cell interacTons.

CPOP: An open source C++ cell POPulation modeler for radiation biology
applications, L. Maigne, A. Delsol, G. Fois, E. Debiton, F. Degoul, H. 
Payno, August 02, 2021, 
DOI:https://doi.org/10.1016/j.ejmp.2021.07.016
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Artificial Neural 
Network (ANN)
Application to photon tracking in SPECT 

Ar#ficial Neural Networks
(ANN)

Genera#ve Adversarial Networks
(GAN)



5°) AI integraAon (MC)

oMonte Carlo simulations can produce highly
accurate imaging device and patient training 
datasets for neural networks 

odeep learning approaches can be applied to 
improve Monte Carlo simulation 
performance (computational efficiency) 
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PubMed search for papers published in Medical Physics journal with neural 
networks as key word

uDosimetry
u Image reconstruction
u Image segmentation
u…..

PubMed search for papers published in Medical Physics
journal with neural network as key word

Neurons: one weight per neuron
Layer: linear combination + activation function (non-linear)

Entries Outputs
Layers of neurons



5°) AI integra8on (MC)
SPECT imaging and ARF func3on
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uAccelerate computing time for the simulation of interactions in 
the head of the camera
uOnly few photons are reaching the detection

u Several Variance Reduction Techniques proposed
uAngular Response Function (ARF)

uReplace SPECT head detection with tabulated response
u Incident particle at ARF plane use tables to get energy 

windows probabilities
uAssume: 

uSpatially invariant
uDetection depends on direction + energy

u Speedup factor between 20 and 100
uComputed only once

Learning SPECT ARF 5

2.3. Generating an image with ARF-nn151

The ARF-nn method was decomposed into a two-step process. First, as with ARF-152

histo, the simulation is run with the SPECT head replaced by an empty plane of 1 nm153

thickness, henceforth called the “ARF plane”, located just in front of the collimator.154

The position, direction, and energy of the photons that reach the ARF plane are stored155

in a dataset. In a second step, performed after the simulation, the image is computed as156

follows using this dataset. For every photon, the coordinates (u, v) in the image plane,157

sampled with 4⇥4 mm pixel size, is determined from the position in the ARF plane as158

proposed in [6], i.e. using the point where the incident photon direction vector intersects159

the image plane located half-way of the crystal length. Figure 1 illustrates the process160

with the ARF and image planes. For the values (E, ✓, �) of each incident photon, the161

NN is used to get the probabilities h(E, ✓,�) = yi. I(u, v, i) is then incremented by yi,162

with i the index of the energy window.163

photons
Collimator

Detected 
photons

Emitted

One count in 
one energy 

window

Crystal

Figure 1. Top: Conventional SPECT simulation principle with photons tracked in
collimator and crystal. Bottom: SPECT simulation with ARF method (both ARF-
histo or ARF-nn). Photons are stopped at the ARF plane and the ARF model provides
probabilities to detect the photons in each energy window (distance between ARF plane
and image plane not at scale).

The time gain of the method compared to Monte-Carlo is that 1) the simulation164

required to generate the image is expected to be faster than a full simulation including165

tracking in the detector head, and 2) the ARF model (histograms or NN) gives the166

probability in all energy windows thus contributing to variance reduction.167

Learning SPECT ARF 5

2.3. Generating an image with ARF-nn151

The ARF-nn method was decomposed into a two-step process. First, as with ARF-152

histo, the simulation is run with the SPECT head replaced by an empty plane of 1 nm153

thickness, henceforth called the “ARF plane”, located just in front of the collimator.154

The position, direction, and energy of the photons that reach the ARF plane are stored155

in a dataset. In a second step, performed after the simulation, the image is computed as156

follows using this dataset. For every photon, the coordinates (u, v) in the image plane,157

sampled with 4⇥4 mm pixel size, is determined from the position in the ARF plane as158
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(crystal midpoint)

Figure 1. Top: Conventional SPECT simulation principle with photons tracked in
collimator and crystal. Bottom: SPECT simulation with ARF method (both ARF-
histo or ARF-nn). Photons are stopped at the ARF plane and the ARF model provides
probabilities to detect the photons in each energy window (distance between ARF plane
and image plane not at scale).

The time gain of the method compared to Monte-Carlo is that 1) the simulation164

required to generate the image is expected to be faster than a full simulation including165

tracking in the detector head, and 2) the ARF model (histograms or NN) gives the166

probability in all energy windows thus contributing to variance reduction.167

ARF

Sarrut et al. Learning SPECT detector angular response funcMon with neural network for 
acceleraMng Monte-Carlo simulaMons, Phys. Med. Biol. 2018  
h^ps://doi.org/10.1088/1361-6560/aae331
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5°) AI integration (MC)
SPECT imaging, GAN and ARF-nn function

Sarrut, D., Etxebeste, A., Krah, N., Létang, J.M. 
Modeling complex par9cles phase space with GAN for Monte Carlo SPECT simula9ons: a proof of 
concept. Phys Med Biol 66, 055014, 2021

(1) generate the training dataset via Monte Carlo simulaTon,
(2)train the GAN 
(3) use the generator of the GAN as a source. 
(4) a second neural network (ARF-nn), is used to model the 
imaging detector response and the two neural networks are 
combined.



5°) AI integraAon (MC)
Applica8on to the genera8on of PHSP files
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1 – Generate training dataset
(PHSP)
2 – Train GAN 
3 – Generate PHSP from GAN 
4 – Use PHSP to compute
dose in waterbox
5 – Compare

GAN for MC simulations 5

PHSP Size Nb of particles

Elekta PRECISE 6MV 2 files of 3.9 GB 1.3⇥ 108 photons each file

CyberKnife IRIS 60mm 2 files of 1.6 GB 5.8⇥ 107 photons each file

Table 1. Characteristics of the two used datasets

Monte-Carlo relative statistical uncertainty �(k) = S(k)
D(k) of the deposited energy in a149

voxel k was computed with the history by history method [20], with k a voxel index,150

S(k) the statistical uncertainty in voxel k and D(k) the total deposited energy in voxel151

k152

In order to compare particles from PHSP and GAN-generated particles, the153

marginal distributions of all 6 parameters were plotted. Then, simulations to compute154

the deposited energy in a water using PHSP and GAN-generated particles were155

compared by analyzing the voxel by voxel di↵erences of the deposited energy. The156

distribution of voxel di↵erences naturally contains uncertainty and we evaluated the157

similarity of this uncertainty between PHPS and GAN generated data. We thus158

compared the distribution of di↵erences between two PHSP (�PHPS), and between159

a GAN and a PHSP simulations (�GAN). The di↵erences were normalised by the160

maximum value in the image, as a proxy for the prescribed dose, denoted D̂PHPS2 ,161

see equation 4.162

�PHPS(k) =
DPHPS2(k)�DPHPS1(k)

D̂PHPS2

(3)

�GAN(k) =
DPHPS2(k)�DGAN(k)

D̂PHPS2

(4)

Moreover, in every voxel, we compute the ratio between voxel di↵erence and163

uncertainty. If the error were normally distributed, the distributions of those ratios164

should have a zero mean and unit standard deviation. Finally, we plot depth dose165

curves (along z) and transversal dose profile at 20mm depth.166

Results167

Figure 1 depicts the evolution of the loss function JD (✓D,✓G) (equation 1) during the168

training process, as a function of iterations. Figures 2 and 3 display the marginal169

distributions of the 6 parameters (E, x, y, dx, dy, dz; z was fixed) extracted from the170

initial PHSP compared to the ones obtained from the GAN. Note that the dataset171

used to train the GAN was di↵erent from the one used for validation. The left panel in172

figure 4 shows the distribution of the relative di↵erences �PHSP and �GAN for both tests173

(Elekta and CyberKnife). The mean di↵erences are indicated with vertical lines. The174

right hand panels show the distribution of the ratio between di↵erences and uncertainty,175

that should ideally depict a zero mean and standard deviation of one. Finally, figures 5176

show transversal and depth profiles of deposited energy for both tests. The learning177

906 L Grevillot et al

Figure 1. Description of the different geometrical elements of the accelerator head, including the
location of the PhS above the secondary collimator.

We found that a mean electron beam energy of 5.8 MeV best fits the measurements. After
adjustment of the energy distribution, several simulations were performed with a FWHM
Gaussian electron spot varying from 0 to 4 mm with a 1 mm step and were compared with
the different dose profiles measured available. A FWHM electron spot of 3 mm was found
to best fit the measurements. The spot size modifies the dose-gradient slope in the penumbra
region and also the profile shape (profile flatness and ‘horns’ on the profile sides). The
influence of different spot sizes on depth-dose simulation was verified. As recommended in
the literature (Fix et al 2005), the FWHM energy was set to 3% of the mean energy. The
electron beam tuning stage was performed with the multiple source model (MSM) and then
with full simulation on the EGEE7 grid (Camarasu-Pop et al 2010). Both led to the same
electron beam parameters.

7 EGEE: Enabling Grids for E-sciencE project.

Sarrut et al. Generative Adversarial Networks (GAN) for compact beam
source modelling in Monte Carlo Simulations, Med. Phys., doi: 
10.1088/1361-6560/ab3fc1

Transverse profiles at 20mm 
depth (left) and depth
profiles (right) deposited
energy for Elekta (top) and 
Cyberknife (bottom) 
machines. Curves were
obtained for PHSP2 and GAN-
based simulations. 

Transverse profiles at 20mm 
depth (left) and depth
profiles (right) deposited
energy for Elekta (top) and 
Cyberknife (bottom) 
machines. Curves were
obtained for PHSP2 and GAN-
based simulations. 
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5°) AI integra8on (MC)
MoCaMed: Advanced Monte Carlo Methods for Medical Physics

ANR AAPG2020 – CE45
42 months
Partners
o LaTIM (INSERM), Julien Bert
o CREATIS (CNRS, INSERM), 

Ane Etxebeste, David Sarrut
o LIRIS (CNRS), David 

Coeurjolly, Nicolas Bonneel, 
Julie Digne, 

Victor Ostromoukhov



Open source and open access toolkits

Molecules

Cell

Clusters of cells / Organ
Patient

Elementary processes:
- Ionization
- Excitation
- Fragmentation
- Radical production

Sub cellular structures

Nano dosimetry

Death,cycle arrest
Migration /metastases
Mechanical properties
Morphology

Micro dosimetry

Evolution of tumour
- Growing
- Control
- Vascularisation

Bystander

Organ motion
Patient morphology
Cancer induction

Biological dose

Delage et al. 2015

cpop.in2p3.fr

J. Comput. Phys. 274 (2014) 841-882

Sc. Rep. 7 (2017) 11923

LPCHEM code

NanOx

MSB

PMRT

The unique open source and open 
access simulation toolkit for 

micro/nano dosimetry and radiation 
biology

• Long term development fully included in Geant4 releases
• International collaboration composed of 42 collaborators
• Coordinated by IN2P3/CNRS since 2008
• Funded by regular support from institutions and 

international calls
• Fruitful involvement in international conferences & 

tutorials 
– Geant4 International User Conference at the 

Physics-Medicine-Biology frontier » series of 
conferences initiated by IN2P3 in 2005

– Annual international tutorials (17)
• High rank and highly cited publications (104 since 2007)

DEVELOPMENT ACCESSIBLE TO OTHER 
TOOLKITS, PARTICULARLY TO GATE

6°) Mul8scale simula8ons 
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The biodose actor uses the biophysics
models predic3ons to calculate the biological

quan33es for an SOBP in a voxelized target

Evaluation of alpha and beta parameters for 
mono-energetic ion beams using data such

as specific energy and water radiolysis

PRE CALCULATED DATA WITH
TRACK SCTRUCTURE MC CODES

BIOPHYSICS MODELS
CLINICAL BEAM MODELING

HIMAC BEAM LINE GEOMETRY IN GATE

BIODOSE ACTOR

RBE
BIOLOGICAL DOSE

SURVIVAL FRACTION

IRRADIATION FIELD WITH PRIMARY IONS AND 
NUCLEAR FRAGMENTS OF DIFFERENT LET

SOBP

The physical dose deposi:on is simulated
for the clinical beam line as an SOBP using

PBS or passive modula:on

6°) Mul8scale simula8ons
Evalua3on of the biological dose in hadrontherapy

Thèse LabEx PRIMES
Yasmine ALI (soutenance décembre 2021)
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Kase et al. (2006)
Inaniwa T. et al. (2010)

Cunha et al. (2017)
Monini et al. (2020)

Specific energy deposited in the cell sensitive
volume on a micro and nanometric scale

Yield of radiolyEc species in the sensiEve volume

Reference α, β values, cell nucleus
and radius of the sensiEve volume 

PRECALCULATED WITH TSMC (G4DNA, LQD)

PRECALCULATED WITH TSMC (G4DNA, LQD)

REFERENCE EXPERIMENTAL DATA

MMKM
PHYSICAL DATA

CHEMICAL DATA

BIOLOGICAL DATA

NANOX

6°) Mul8scale simula8ons
Biophysical models
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6°) Multiscale simulations
Estimate cell survival
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END OF RUN
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STEPPING ACTION IN VOXEL

Linear Interpola:on Coefficients C++ Map

The linear interpola-on coefficients 
are calculated a3er the alpha beta 

data table

The deposited energy is retrieved to es-mate
the frac-on of deposited energy per ion type 

The matrix is initialized and the 
target volume is voxelized.

Using the stored alpha and beta mix 
values, the following quan--es are 
es-mated per voxel :

Alpha Beta Mix Values C ++ Map

Deposited Energy C++ Map

The linear interpola-on coefficients are used to 
calculate the alpha and beta mix values 

Voxel i

BEGIN OF RUN

The informa-on retrieved 
from each step in each voxel

OUTPUT

𝛼!"# =#𝑓$ 𝑎$ 𝛽!"# =#𝑓$ 𝛽$

0

0,2

0,4

0,6

0,8

1

0 1 2 3 4 5 6 7 8 9 10

Fr
ac

i9
on

of
 e

de
p

Kine9c Energy (MeV/n)

Hydrogen ion

The output file contains the survival 
frac-on, biological dose and RBE per voxel

No post treatment needed

Python script to combine the
output of each mono-energetic peak 

PENCIL BEAM SCANNING

PASSIVE MODULATION

RBE
BIOLOGICAL DOSE

SURVIVAL FRACTION

6°) Mul8scale simula8ons
Methodology
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HIMAC LINE
Chiba, Japan

6°) Multiscale simulations
Some results

Internship open in 2022 to con8nue the work in pa8ent CT-scans
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7°) Events

GATE training for beginners 23-25 November 2021 
h"ps://cnrsforma.on.cnrs.fr/gate-training-on-medical-imaging-dosimetry-radia.on-
therapy?mc=GATE%20Training

Python Data Analysis for GATE simulaDons 8-10 March 2022
h"ps://cnrsforma.on.cnrs.fr/gate-training-on-medical-imaging-dosimetry-radia.on-
therapy?mc=GATE%20Training

Masters in particle & medical 
physics (200 students)

GATE trainings for master programs
• Server dedicated to training
• Initiated in France this year
• To be extended to any master program

GATE workshop 23rd of October 2021
h"ps://nssmic.ieee.org/2021/program/ 

Next GATE scientific meeting
18th of November 2021
Information coming soon

https://cnrsformation.cnrs.fr/gate-training-on-medical-imaging-dosimetry-radiation-therapy?mc=GATE%20Training
https://cnrsformation.cnrs.fr/gate-training-on-medical-imaging-dosimetry-radiation-therapy?mc=GATE%20Training
https://nssmic.ieee.org/2021/program/

