

TOULOUSE

Intelligence artificielle pour la segmentation automatique du Pelvis et Thorax et pour la génération de plans de traitements de cancers pelviens en radiothérapie externe

Gwenaelle SIDORSKI (PhD Student)

¹ Radiotherapy Department, Groupe Oncorad Garonne, Clinique Pasteur, Toulouse France

Jocelyne MAZURIER¹, Baptiste PICHON¹, Baptiste PINEL¹, Gaëlle JIMENEZ¹, Olivier GALLOCHER¹, Christian CHEVELLE¹, Igor LATORZEFF¹, Jeremy CAMILLERI¹, Vincent CONNORD¹, Yoan MARTY¹, Nicolas MATHY¹, Delphine MARRE¹, Audrey PEYRAS¹, Daniel ZARATE¹, BERRY², X. FRANCERIES³, E.VILLAIN⁴

² CNRS (CerCo) UMR Unité 5549, Faculté Paul Sabatier, Toulouse, France.

³ CRCT, UMR 1037, INSERM, Université Toulouse III-Paul Sabatier, Toulouse, France.

⁴ LAAS CNRS, Université de Toulouse, CNRS, INSA, UPS, Inserm ToNIC, UMR 1214 Toulouse NeuroImaging Center, Toulouse, France

Table of contents

Introduction - Clinical Use of RS | IA Theory | Auto Segmentation| Auto Plan | Conclusion

Table of contents

5

IA to generate treatment plans in RayStation

Process to use Artificial Intelligences in RayStation

Patient

Introduction - Clinical Use of RS | **IA Theory** | Auto Segmentation| Auto Plan | Conclusion

Clinical use of Artificial Intelligences models fo in RayStation needs a specific process

Algorithm for automatic segmentation

Introduction - Clinical Use of RS | **IA Theory** | Auto Segmentation| Auto Plan | Conclusion

FCNN gives a category (ROI) to every voxel of the image

11A algorithm for automatic treatment plan generation

Introduction - Clinical Use of RS | **IA Theory** | Auto Segmentation| Auto Plan | Conclusion

Treatment plan generation with a model of Machine Learning

9B algorithm for automatic treatment plan generation

Introduction - Clinical Use of RS | **IA Theory** | Auto Segmentation| Auto Plan | Conclusion

Treatment plan generation with a model of Machine Learning

Table of contents

Process to use artificial intelligences

Patient

datas

Introduction - Clinical Use of RS | IA Theory | Auto Segmentation | Auto Plan | Conclusion

Clinical use of Artificial Intelligences models fo in RayStation needs a specific process

CLINIQUE Pasteur

Method to evaluate of Auto segmentation

- ✤ Compare timing of manual contours VS segmentation
- ✤ Calculation similarity index : Dice, Jaccard, Sensibility et Specificity and Mean and Hausdorff distances (H)
- If bad results (all index < 0,8) : Qualitative review of physician to decided to accept or not the auto segmentation model

Automatic segmentation of Pelvis

Introduction - Clinical Use of RS | IA Theory | **Auto Segmentation**| Auto Plan | Conclusion

Physician contours : minimum 10 minutes Deep Learning contours : 30 secondes

Method to evaluate of Auto segmentation

Introduction - Clinical Use of RS | IA Theory | **Auto Segmentation**| Auto Plan | Conclusion

Dice < 0,8 for Seminal vesicles and Lymphatic nodes, but high specificity (accepted with manual corrections) Dice > 0,8 for Prostate, Bladder, Rectum, Femoral Heads (accepted with manual corrections) Model accepted clinicaly

Automatic segmentation for Thorax

Introduction - Clinical Use of RS | IA Theory | Auto Segmentation | Auto Plan | Conclusion

Deep Learning contours : 30 secondes

Method to evaluate of Auto segmentation

Introduction - Clinical Use of RS | IA Theory | Auto Segmentation | Auto Plan | Conclusion

Dice > 0,8 for Spinal canal, lungs and heart (accepted with manual corrections) Dice < 0,8 esophagus (accepted **but new model for esophagus considered**) **Model accepted clinicaly**

Process to use artificial intelligences

Patient

datas

Introduction - Clinical Use of RS | IA Theory | **Auto Segmentation**| Auto Plan | Conclusion

Clinical use of Artificial Intelligences models fo in RayStation needs a specific process CLINICAL USE OF AUTO SECMENTATION

Table of contents

Process to use Artificial Intelligences in RayStation

Patient

datas

Introduction - Clinical Use of RS | IA Theory | Auto Segmentation| **Auto Plan** | Conclusion

Clinical use of Artificial Intelligences models fo in RayStation needs a specific process

LOCAL Pelvic models for auto planning

and

the

2

9B

databases

in

and

from

Introduction - Clinical Use of RS | IA Theory | Auto Segmentation | Auto Plan | Conclusion

Method to evaluate of Auto Plans Commissioning of ML model

- ✤ Qualitative review of the dose distributions and DVH curves :
- Quantitative evaluation of the protocol specific clinical goals
- * Comparison between the automated plans with ML and the standard optimized plans with index :

Conformity index	$Conformity = \frac{Volume_{target}}{Volume_{isodose_ref}}$
Homogeneity index	$Homogeneity = \frac{D_2 - D_{98}}{D_{50}}$
Dose Gradient index	$Gradient = \frac{Volume_{isodose \ 50\%}}{Volume_{isodose \ ref}}$

Standard vs ML : review of the dose distributions and DVH curves

CT: -43 Density

CT: CT 1

Generic CT

Introduction - Clinical Use of RS | IA Theory | Auto Segmentation | Auto Plan | Conclusion

Select dose Beam Set dose: ProstateVS 46 (ProstateVS_SansBallon_GS, CT 1) Clinical: Collapsed Cone v5/2 Position: -15.11 -0.40 5.94 cm CT: -43 H Dose: 18.08% of 46.00 [8.31] Gu 80 70 60 50 Generic ct = = = = • Standard optimized plan

ML algorithm generate plan in **16 minutes = twice faster** than standard optimization

Standard vs ML : Conformity index

0.91

0.87

0.83

PROSTATE

0.92

0.90

0.88

0.86

0.84

0.82

0.80

0.78

0.76

Maximum of standard

optimization

Average of

standard

optimization

Minimum of

standard optimization Introduction - Clinical Use of RS | IA Theory | Auto Segmentation| **Auto Plan** | Conclusion

Results of ML between 0,91 and 0,76 : LOCAL ML models have **equivalent or best conformity** than standard optimized plans

PELVPRO

0.86

0.84

0.81

CONFORMITY

0.91

0.88

0.81

PROVS

Standard vs ML : Homogeneity index

Introduction - Clinical Use of RS | IA Theory | Auto Segmentation | Auto Plan | Conclusion

Results of ML between 0,04 and 0,1 : LOCAL ML models have equivalent homogeneity indices than standard optimized plan.

Standard vs ML : Dose gradient index

Introduction - Clinical Use of RS | IA Theory | Auto Segmentation| **Auto Plan** | Conclusion

3.490

- 3.46

3.06

2.84

PELVPRO

GRADIENT DOSE

3.26

2.98

2.88

•••

PROSTATE

3.41

3.02

2.85

PROVS

3.5

3.4

3.3

3.2

3.1

3.0

2.9

Maximum of

standard optimization

Average of

standard

optimization

Minimum of

standard

optimization

Process to use Artificial Intelligences in RayStation

Patient

datas

Introduction - Clinical Use of RS | IA Theory | Auto Segmentation| **Auto Plan** | Conclusion

Clinical use of Artificial Intelligences models fo in RayStation needs a specific process

Conclusion and future work

Introduction - Clinical Use of RS | IA Theory | Auto Segmentation| Auto Plan | **Conclusion**

Automatic segmentation

- ✓ Fast calculation (30 seconds)
- ✓ Method reliable (good results)
- ✓ RaySearch provide commissionned model
- **X** Limited evaluation (needs qualitative review : time consuming)
- X Construction of database is time consuming
- **Evaluation of ORL** model on going (verry promising)
- **New databases** to create **new models**
- Creation of user friendly algorithm for database construction

Automatic planification

- ✓ **Fast calculation** (16 minutes / BeamSet)
- ✓ **ML plans are equivalent** to standard optimized plans
- ✓ Adjustement of model very usefull
- 1 model = **several** close **treatment protocols** and **strategies**
- RaySearch **provide commissionned ML models** and systematically **help for adjustments**
- **X** Construction of database and adjustement of ML on-site are time consumming and need a dedicated person
- C Evaluation of the new algorithm (9B VS 11A)
- C Evaluation with **Complexity index**