

# Design and characterization of a monolithic diamond ΔE-E telescope for particle identification doctoral seminar

Alexandre PORTIER

PhD director: Marie-Laure Gallin-Martel (LPSC)

PhD co-director: Julien Pernot (Institut Néel)

The 15 / 03 / 2021

International collaboration: Japan-France collaboration (test of Japanese pn junction) ; experiments at ILL (Lohengrin and FIPPS) **Project DIATEL (IDEX UGA)** hold by Denis Dauvergne + **Project DIAMTECH (IN2P3-CNRS)** hold by Marie-Laure Gallin-Martel **PRC JSPS – CNRS TYL IN2P3** 

PhD thesis motivations

#### LOHENGRIN experiment at ILL



LOHENGRIN spectrometer at the Laue-Langevin Institut Grenoble.

 $\blacktriangleright$  A magnetic field deflects vertically the FF according to their  $\frac{E}{a}$ 

> An electric field deflects horizontally the FF according to their  $\frac{A}{a}$ 



LOHENGRIN spectrometer at the Laue-Langevin Institut Grenoble.

- > A magnetic field deflects vertically the FF according to their  $\frac{E}{a}$
- > An electric field deflects horizontally the FF according to their  $\frac{A}{a}$

reconstructed: Pulse Height defect !

# PhD thesis main goals

#### **ΔE-E detector**



#### PhD thesis main goals

**ΔE-E detector** 



#### 

#### **Charge particle in the medium:**

- Ionization: electron hole pairs creation
- Electric field  $\rightarrow$  charge carriers drift

# **Two different situations:**

- 1. Particles that stop in the detector
- 2. Particles that pass through the detector

# Solid ionization chamber

#### PhD thesis main goals

#### **ΔE-E detector**



# **ToF – eBIC setup development**

# Time of Flight – electron Beam Induced Current



Study low range particles which stop in the detector

Beam  $\rightarrow$  allow to control the charge injection Not the case for radioactive sources

Diamond properties

# Physical properties compared at 300 K

|                                                                       | Diamond            | Silicon               | SiC               |
|-----------------------------------------------------------------------|--------------------|-----------------------|-------------------|
| Undoped material resistivity (Ω.cm)                                   | > 10 <sup>13</sup> | 2.3 · 10 <sup>5</sup> | > 10 <sup>5</sup> |
| Bandgap (eV)                                                          | 5.5                | 1.1                   | 3.26              |
| Pair creation energy e <sup>-</sup> /h <sup>+</sup> (eV)              | 13.1               | 3.6                   | 7.8               |
| Displacement energy (eV)                                              | 43                 | 25                    | 20 - 35           |
| Carrier mobility (cm <sup>2</sup> .V <sup>-1</sup> .s <sup>-1</sup> ) | > 2000             | 800 - 1400            | 115 - 1000        |
| Thermal conductivity (W.cm <sup>-1</sup> .K <sup>-1</sup> )           | 20                 | 1.5                   | 1.2               |

Diamond as a detector :

- ✓ Very low leakage current
- ✓ Low noise
- ✓ Good radiation hardness
- ✓ Very fast
- ✓ Work at room temperature



| Introduction                                                                                                                                                                                     | ΔE-E detector      |                       | ToF – eBIC expe   | eriments   | Conclusions      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|-------------------|------------|------------------|
| Diamond properti                                                                                                                                                                                 | es                 |                       |                   | Diamon     | d holder at LPSC |
| Physical properties compared a                                                                                                                                                                   | nt 300 K           |                       |                   | Spacer     |                  |
|                                                                                                                                                                                                  | Diamond            | Silicon               | SiC               |            |                  |
| Undoped material resistivity (Ω.cm)                                                                                                                                                              | > 10 <sup>13</sup> | 2.3 · 10 <sup>5</sup> | > 10 <sup>5</sup> |            | /<br>Diamond     |
| Bandgap (eV)                                                                                                                                                                                     | 5.5                | 1.1                   | 3.26              |            |                  |
| Pair creation energy e <sup>-</sup> /h <sup>+</sup> (eV)                                                                                                                                         | 13.1               | 3.6                   | 7.8               | 555<br>555 |                  |
| Displacement energy (eV)                                                                                                                                                                         | 43                 | 25                    | 20 - 35           | strate     |                  |
| Carrier mobility (cm <sup>2</sup> .V <sup>-1</sup> .s <sup>-1</sup> )                                                                                                                            | > 2000             | 800 - 1400            | 115 - 1000        |            |                  |
| Thermal conductivity (W.cm <sup>-1</sup> .K <sup>-1</sup> )                                                                                                                                      | 20                 | 1.5                   | 1.2               |            |                  |
| <ul> <li>Diamond as a detector :</li> <li>✓ Very low leakage current</li> <li>✓ Low noise</li> <li>✓ Good radiation hardness</li> <li>✓ Very fast</li> <li>✓ Work at room temperature</li> </ul> |                    |                       |                   |            | 4/21             |

Bandgap (eV)

#### ∆E-E detector

Diamond

> 10<sup>13</sup>

5.5

13.1

43

> 2000

20

Silicon

 $2.3 \cdot 10^{5}$ 

1.1

3.6

25

800 - 1400

1.5

Diamond properties

Physical properties compared at 300 K

SiC

> 10<sup>5</sup>

3.26

7.8

20 - 35

115 - 1000

1.2

**Diamond holder at LPSC** 



#### Read out electronic and acquisition

Large bandwidth current preamplifier Gain > 40 dB Bandwidth 2 GHz

Very low leakage current

- ✓ Low noise
- ✓ Good radiation hardness

Undoped material resistivity (Ω.cm)

Pair creation energy  $e^{-}/h^{+}$  (eV)

Displacement energy (eV)

Carrier mobility (cm<sup>2</sup>.V<sup>-1</sup>.s<sup>-1</sup>)

Thermal conductivity (W.cm<sup>-1</sup>.K<sup>-1</sup>)

Diamond as a detector :

- ✓ Very fast
- ✓ Work at room temperature





4/21

Outlines

- 1.  $\Delta E$ -E detector : from simulation to first samples
  - SRIM Simulations & first design
  - First sample processing steps
- 2. Electron Beam Induced Current (eBIC) experiments at Néel
  - Set up of the experiment
  - Time of flight studies
  - Diamond properties study at different temperatures
  - Detector mappings

#### Outlines

- 1.  $\Delta E$ -E detector : from simulation to first samples
  - SRIM Simulations & first design
  - First sample processing steps
- 2. Electron Beam Induced Current (eBIC) experiments at Néel
  - Set up of the experiment
  - Time of flight studies
  - Diamond properties study at different temperatures
  - Detector mappings



Simulate the energy deposition in the  $\Delta E$ -E detector for different ions, ion energies and detector architectures.

Determine the thickness of the  $\Delta E$  (p-) layer of the first sample

| Layers    | Parameters | Consideration & criteria                                                                          | Requirements                                                     | Growth method                         |
|-----------|------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------|
|           | Thickness  | <ul><li>Energy deposition need to be measurable</li><li>Resistivity and leakage current</li></ul> | (1 MeV < $\Delta E$ < $E_{init}/2$ )<br>I <sub>leak</sub> < 1 nA |                                       |
| p- layer  | Doping     | Non intentionally doped (Avoid defaults)                                                          | As low as possible                                               | Microwave Plasma                      |
|           | Contact    | Resistivity and leakage current                                                                   | I <sub>leak</sub> < 1 nA                                         | enhanced Chemical<br>Vapor Deposition |
| p++ laver | Thickness  | <ul><li>Dead area of detection</li><li>Growth layer feasibility</li></ul>                         | thinnest as possible<br>> 200 nm → 500 nm                        | DiamFab                               |
| . ,       | Doping     | Could be considered as a conductor                                                                | [B] > 10 <sup>20</sup> cm <sup>-3</sup>                          |                                       |
| Cubatrata | Thickness  | Enough thick to stop the particle                                                                 | ~550 μm                                                          |                                       |
| Substrate | Doping     | Non intentionally doped (Avoid defaults)                                                          | As low as possible                                               | ED SCCVD                              |





#### **Goal : dimensioning the p- layer of the detector**

#### Simulation details :

- ✤ 1 ion (H, D, T, <sup>3</sup>He, <sup>4</sup>He, FF)
- Different ion initial energies (for <sup>4</sup>He: [1; 10] MeV)
- \* Different  $\Delta E$  stage thickness th<sub> $\Delta E$ </sub> [0.1, 10]  $\mu m$
- → Graph ΔE± $\sigma_{\Delta E}$  vs E<sub>init</sub>

SRIM simulations – Results

#### SRIM simulations for light ions

SRIM simulations for heavy ions



<u>Observations</u>: the mass ordering is respected for the light isotopes but not for the heaviest ones. Discussion with Ulli Koester → difficult to do simulation using FF (Fission Fragments)

1<sup>st</sup> design based on the light ion simulations  $\rightarrow$  in particular: 5 MeV alpha particles



| In | 1tra |    | inti | n |
|----|------|----|------|---|
|    | 1110 | uu | ιιι  |   |
|    |      |    |      |   |

# **Etching process**

Etching process







Lithography device at NanoFab clean room NanoFab is a platform of Institut Néel





11/21

Plassys: metal deposition device at NanoFab NanoFab is a platform of Institut Néel



11/21

PTA: Plateforme Technologique Amor DRIE: Deep Reactive-Ion Etching

12/21



#### Outlines

- 1.  $\Delta$ E-E detector : from simulation to first samples
  - SRIM Simulations & first design
  - First sample processing steps
- 2. Electron Beam Induced Current (eBIC) experiments at Néel
  - Set up of the experiment
  - Time of flight studies
  - Diamond properties study at different temperatures
  - Detector mappings



| Introduction | ΔE-E detector | ToF – eBIC experiments | Conclusions |
|--------------|---------------|------------------------|-------------|
|              |               |                        |             |
|              | eBIC setun    |                        |             |

# Scanning electron microscope (SEM) setup



# electron Beam Induced current (eBIC) setup



14/21





Development of a ToF – eBIC setup with F. Donatini (POM : Pôle Optique et Microscopie – Institut Néel)

ToF – eBIC : Time of Flight – electron Beam Induced Current

✓ Allow **beam monitoring** (energy, intensity...)

- → Possible to do a 2D mapping
- ✓ Have an **external trigger**
- ✓ Monitor the temperature

# Shockley-Ramo Theorem

# Signal shape for low penetration rate particles (like alpha ions or electrons)



Shockley-Ramo theorem

$$I_{induced} = q \ \overrightarrow{v_q} \cdot \overrightarrow{E_w}$$

Charge movement induces a current on detector electrodes



Shockley-Ramo Theorem

# Signal shape for low penetration rate particles (like alpha ions or electrons)



Traces for different polarizations

# Signal observed on a scCVD diamond



17/21

#### $\Delta$ E-E detector

Traces for different polarizations

#### Signal observed on a scCVD diamond



17/21

Drift velocity and mobility

#### Signal observed on a scCVD diamond

| Holes                      |                                        |                                               |  |
|----------------------------|----------------------------------------|-----------------------------------------------|--|
| Measures                   | $\mu_0~[\mathrm{cm^2}/(\mathrm{V.s})]$ | <i>v<sub>sat</sub></i> [10 <sup>6</sup> cm/s] |  |
| ToF – eBIC meas.           | 2334 ± 10                              | 13.1 ± 0.1                                    |  |
| LPSC $\alpha$ source meas. | 2380 ± 20                              | 12.1 ± 0.1                                    |  |
| F. Marsolat *              | 2349 ± 28                              | 14.1 ± 0.3                                    |  |

| Electrons                  |                           |                                               |  |
|----------------------------|---------------------------|-----------------------------------------------|--|
| Measures                   | $\mu_0~[ m cm^2$ / (V.s)] | <i>v<sub>sat</sub></i> [10 <sup>6</sup> cm/s] |  |
| ToF – eBIC meas.           | 1853 ± 17                 | 8.8 ± 0.1                                     |  |
| LPSC $\alpha$ source meas. | 2020 ± 20                 | 8.2 ± 0.1                                     |  |
| F. Marsolat *              | 2053 ± 87                 | 9.2 ± 0.8                                     |  |

\* F. marsolat, PhD Thesis, 2014 – measurement done with an  $\alpha$  source



**Drift velocity** 

ToF – eBIC experiments

Mapping of the detector response

# Picture of a pixelated diamond



Metallization different on the two faces:

- Fully metallized face
- Pixelated face







# Mapping of the detector response

# **Coarse mapping of detector charge response**



#### **SEM mapping picture**

3.20 mm



20/21

#### Conclusions and perspectives

#### Work done

#### <u>ΔE-E detector</u>

SRIM simulations done 1<sup>st</sup> detector design based on light ions (<sup>4</sup>He)

> Manufacture of the 1<sup>st</sup> sample : work in progress

#### <u>ToF – eBIC experiments:</u>

# First ToF – eBIC setup

- Beam parameters optimization: work in progress
- Study the transport properties of charge carriers at different temperatures
- Charge mapping of the detector

# **Perspectives**

#### <u>ΔE-E detector</u>

- p- stage tests of the 1<sup>st</sup> sample
- Manufacture of the 2<sup>nd</sup> sample + detector tests (LPSC setup, AIFIRA, eBIC...)
- Fission Fragment (FF) adapted design
- > Experiments à ILL

# <u>ToF – eBIC experiments:</u>

- 2 conferences (orals) 2021 MRS Spring Meeting (April) and NDNC (June) and write an article
- Make the test bench technologically accessible (write technological instructions) -> experimental platform open to other experiments in diamond international community

# Thank you for your attention!