Conception of a prompt gamma detector for the hadrontherapy online monitoring

Maxime Jacquet

Supervisor: Marie-Laure Gallin-Martel Co-supervisor: Sara Marcatili

Laboratoire de Physique Subatomique et Cosmologie

Introduction	New imaging modality: Prompt Gamma Time Imaging	Conception of TIARA detection system	Conclusion
0000	00000	0000000	0

- Crystal optimization
- Photodetector characterization

Introduction	New imaging modality: Prompt Gamma Time Imaging	Conception of TIARA detection system	Conclusion
0000			

2 New imaging modality: Prompt Gamma Time Imaging

Conception of TIARA detection system

- Crystal optimization
- Photodetector characterization

Introduction	New imaging modality: Prompt Gamma Time Imaging	Conception of TIARA detection system	Conclusion
0000	00000	0000000	
Proton	therapy		

protons (Bragg Peak)

Knopf et al 2013 Phys. Med. Biol. 58 R131

Maximal energy deposition nearby the end of the proton range

⇒ Possibility of a high ballistic precision

Introduction	New imaging modality: Prompt Gamma Time Ima	iging Conception of TIARA detection system	Conclusion
0000	00000	0000000	
Proton	therapy		

protons (Bragg Peak)

Knopf et al 2013 Phys. Med. Biol. 58 R131

Maximal energy deposition nearby the end of the proton range

⇒ Possibility of a high ballistic precision Uncertainties on the proton range

 \Rightarrow Establishment of safety margins

Introduction ●000	New imaging modality: Prompt Gamma Time Imaging	Conception of TIARA detection system	Conclusion
Proton	therapy		

protons (Bragg Peak)

Knopf et al 2013 Phys. Med. Biol. 58 R131

depth

Maximal energy deposition nearby the end of the proton range

⇒ Possibility of a high ballistic precision

Uncertainties on the proton range

 \Rightarrow Establishment of safety margins

Online proton therapy monitoring

- Detection of secondary particles coming from nuclear collisions
- Location of the Bragg Peak in real time
- Reduction of the applied safety margins
 - \Rightarrow Improvement of treatment accuracy

Introduction ●000	New imaging modality: 00000	Prompt Gamma Time Imaging	Conception of TIARA detection system	Conclusion O
Proton	therapy			

Knopf et al 2013 Phys. Med. Biol. 58 R131

Maximal energy deposition nearby the end of the proton range

⇒ Possibility of a high ballistic precision Uncertainties on the proton range

 \Rightarrow Establishment of safety margins

Online proton therapy monitoring

- Detection of **secondary particles** coming from nuclear collisions
- Location of the **Bragg Peak** in real time
- Reduction of the applied safety margins
 - ⇒ Improvement of treatment accuracy

Secondary particles studied: Prompt Gamma (PG)

Introduction	New imaging modality: Prompt Gamma Time Imag	ging Conception of TIARA detection system	Conclusion
0●00	00000		O
Prompt	: Gamma		

Prompt gamma:

Gamma emitted by a nuclear de-excitation following a nuclear collision within the target

PG features

- $1 < E_{P_G} < 8 \text{ MeV}$
- $\bullet ~\approx$ Isotropic emission
- $\checkmark \langle T_{PG}
 angle < 1 \ \mathrm{ps}$
- × Low available statistics : \approx 0.01 γ .p⁻¹.cm⁻¹

Introduction 0●00	New imaging modality: 00000	Prompt Gamma Time Imaging	Conception of TIARA detection system	Conclusion
Prompt	Gamma			

Prompt gamma:

Gamma emitted by a nuclear de-excitation following a nuclear collision within the target

PG features

- $1 < E_{P_G} < 8 \text{ MeV}$
- $\bullet \ \approx \ \text{Isotropic emission}$
- $\checkmark \langle T_{PG}
 angle < 1 \ \mathrm{ps}$
- × Low available statistics : \approx 0.01 γ .p⁻¹.cm⁻¹

PG interesting properties

- **Spatial correlation** between PG emission profile and proton range
- \Rightarrow Short $\langle T_{PG} \rangle$ implies a time correlation

Krimmer et al, NIMA 2018

Introduction	New imaging modality: Prompt Gamma Time Imaging	Conception of TIARA detection system	Conclusion
0000	00000	0000000	0
Droport	Caranaa		

Prompt Gamma

Prompt gamma:

Gamma emitted by a nuclear de-excitation following a nuclear collision within the target

PG features

- $1 < E_{P_G} < 8 \text{ MeV}$
- \approx Isotropic emission
- $\checkmark \left< T_{PG} \right> < 1 \text{ ps}$
- × Low available statistics : \approx 0.01 γ .p⁻¹.cm⁻¹

PG interesting properties

- **Spatial correlation** between PG emission profile and proton range
- \Rightarrow Short $\langle T_{PG} \rangle$ implies a time correlation

Krimmer et al, NIMA 2018

Time-Of-Flight(TOF)-based online monitoring

Introduction	New imaging modality: 00000	Prompt Gamma Time Imaging	Conception of TIARA detection system	Conclusion O
PG tim	ing (PGT):	concept		

Introduction	New imaging modality:	Prompt Gamma	Time Imaging	Con
0000	00000			000

PG timing (PGT): concept

Measurement of the $t_p + t_{\gamma}$ distribution

PGT features

- ✓ Monitoring in real time
- High detection efficiency
- ✓ Neutron rejection by TOF
- × TOF limited by: the bunch width the beam instabilities
- $\Rightarrow~\approx$ 1 ns rms of time resolution (cyclotron)

Introduction	New imaging mo	dality: Prompt	Gamma Ti	me Imaging
0000	00000			

PG timing (PGT): concept

Golnik et al 2014 Phys. Med. Biol. 59 5399

Measurement of the $t_p + t_{\gamma}$ distribution

PGT features

- ✓ Monitoring in real time
- ✓ High detection efficiency
- ✓ Neutron rejection by TOF
- ${\color{red} {\bf X}}$ TOF limited by: the bunch width the beam instabilities
- $\Rightarrow~\approx$ 1 ns rms of time resolution (cyclotron)

Increase PGT sensitivity by means of a beam monitor in a single proton regime

Increase of PGT sensitivity method

- Reduction of the beam current
- Beam monitor: diamond hodoscope
- TOF detection hodoscope - gamma detector
- \Rightarrow Coincidence time resolution: **101 ps** rms

TOF-based reconstruction of PG vertices: PG Time Imaging (PGTI) approach

TOF-based reconstruction of PG vertices: PG Time Imaging (PGTI) approach

Vertex reconstruction

$$\mathsf{T}_{\mathsf{Start}} - \mathsf{T}_{\mathsf{stop}} = \mathsf{T}_{\mathsf{proton}}(\mathbf{r}_{\mathsf{v}}) + \frac{1}{c} \|\mathbf{r}_d - \mathbf{r}_{\mathsf{v}}\|$$

- $T_{PG}(\mathbf{r}_d, \mathbf{r}_v)$: Analytical determination
- $T_{proton}(\mathbf{r}_{v})$: Monte Carlo (MC) simulation

Development and validation of the vertex reconstruction method + 1D approximation

Introduction	New imaging modality: Prompt Gamma Time Imaging	Conception of TIARA detection system	Conclusion
	00000		

Introduction

2 New imaging modality: Prompt Gamma Time Imaging

- Crystal optimization
- Photodetector characterization

Introd	ucti	on
0000		

New imaging modality: Prompt Gamma Time Imaging •0000 Conception of TIARA detection system

Conclusion

Validation of reconstruction method

Simulated geometry (GEANT4.10.4 release)

- A 10 cm radius head
- A diamond-based beam hodoscope placed 5 cm upstream the head
- A phase space surrounding the head
- 100 MeV proton beam

Introd	uction

New imaging modality: Prompt Gamma Time Imaging ●0000 Conception of TIARA detection system

Conclusion

Validation of reconstruction method

Simulated geometry (GEANT4.10.4 release)

- A 10 cm radius head
- A diamond-based beam hodoscope placed 5 cm upstream the head
- A phase space surrounding the head
- 100 MeV proton beam

Two main reconstruction discrepancies: **specific uncorrelated PG-rays**

Validation of PGTI reconstruction method, assuming minor differences are negligible with realistic detector resolutions

Introduction	New imaging modality:	Prompt	Gamma	Time	Imagi
	0000				

Conclusion

Detection of a longitudinal shift

Simulation parameters

- Air cavity of variable thickness (1 to 1.5 cm)
- 30 detection surfaces of 1×1 cm² with 100 ps rms, 1 MeV rms, and a detection efficiency of 25 %
- 6 mm rms wide proton beam with 0.1% FWTM of energy spread

Introduction 0000	New imaging modality: Prompt Gamma Time Imaging 00000	Conception of TIARA detection system	
Detecti	ion of a longitudinal shift		
			_

Simulation parameters

- Air cavity of variable thickness (1 to 1.5 cm)
- 30 detection surfaces of 1×1 cm² with 100 ps rms, 1 MeV rms, and a detection efficiency of 25 %
- 6 mm rms wide proton beam with 0.1% FWTM of energy spread

Comparison of:

- Irradiation reference profile (1 cm air cavity, 1.5×10^9 impinging protons)
- Treatment profile (variable air cavity, 10⁸ impinging protons)

Conclusion

Introduction	New imaging modality:	Prompt	Gamma	Time	Imaging
0000	0000				

7/19

Detection of a longitudinal shift

Simulation parameters

- Air cavity of variable thickness (1 to 1.5 cm)
- 30 detection surfaces of 1×1 cm² with 100 ps rms, 1 MeV rms, and a detection efficiency of 25 %
- 6 mm rms wide proton beam with 0.1% FWTM of energy spread

Comparison of:

- Irradiation reference profile (1 cm air cavity, 1.5×10^9 impinging protons)
- Treatment profile (variable air cavity, 10⁸ impinging protons)

Introduction New imaging modality: Prompt Gamma Time Imaging

Conception of TIARA detection system

Conclusion 0

Detection of a transverse shift

Center Of Gravity (COG) method:

$$\mathbf{r}_{COG} = \frac{1}{N} \sum_{i=0}^{N_{Det}} \mathbf{r}_i n_i$$

Variables

- N: Total number of counts
- **r**_i: ith detector coordinate vector
- n_i: Number of counts in the ith detector

Introduction New imaging modality: Prompt Gamma Time Imaging

Conception of TIARA detection system

Conclusion

Detection of a transverse shift

Center Of Gravity (COG) method:

$$\mathbf{r}_{COG} = \frac{1}{N} \sum_{i=0}^{N_{Det}} \mathbf{r}_i n_i$$

Variables

- N: Total number of counts
- **r**_i: ith detector coordinate vector
- n_i: Number of counts in the ith detector

Simulation parameters

- Y-shift of the proton beam (0 to 0.5 cm)
- 30 detection surfaces of 1×1 cm² with 100 ps rms, 1 MeV rms, and a detection efficiency of 25 %
- 6 mm rms wide proton beam with 0.1% FWTM of energy spread

Introduction New imaging modality: Prompt Gamma Time Imaging 0000 00000 Conception of TIARA detection system

Conclusion

Detection of a transverse shift

Center Of Gravity (COG) method:

$$\mathbf{r}_{COG} = \frac{1}{N} \sum_{i=0}^{N_{Det}} \mathbf{r}_i n_i$$

Variables

- N: Total number of counts
- **r**_i: ith detector coordinate vector
- n_i: Number of counts in the ith detector

Simulation parameters

- Y-shift of the proton beam (0 to 0.5 cm)
- 30 detection surfaces of 1×1 cm² with 100 ps rms, 1 MeV rms, and a detection efficiency of 25 %
- 6 mm rms wide proton beam with 0.1% FWTM of energy spread

Comparison of:

- Reference COG calculation (beam on the X-axis, 1.5×10^9 impinging protons)
- Treatment COG calculation (Y-shifted beam, 10⁸ impinging protons)

Introduction	New imaging modality: Prompt Gamma Time Imaging
0000	00000

Conclusion

Results

Longitudinal sensitivity

- 1 mm detection of a beam shift at 2σ
- Linear behavior \rightarrow calibration
- Fit slope < 1

Introduction	New imaging modality: Prompt Gamma Time Imaging
0000	00000

Results

Longitudinal sensitivity

- 1 mm detection of a beam shift at 2σ
- Linear behavior \rightarrow calibration
- Fit slope < 1

Transverse sensitivity

- 2 mm detection of a beam shift at 2σ
- Linear behavior → calibration
- Fit slope < 1

Summary of PGTI results	Introduction	New imaging modality: 0000●	Prompt Gamma Time Imaging	Conception of TIARA detection system	Conclusion O
	Summa	ry of PGTI	results		

	Longi	tudinal shift		Transverse shift
Number of protons	10 ⁸	10 ⁹	10 ⁸	10 ⁸
Methods	100 ps VR	1 ns VR	XCOG	Усос
Sensitivity at 1σ (mm)	1	1	2	1
Sensitivity at 2σ (mm)	1	2	4	2

Detection of :

- 1 mm of longitudinal beam shift at 2σ on the first irradiation spot
- 2 mm of transverse beam displacement at 2σ on the first irradiation spot

Jacquet et al arXiv:2012.09275 submitted to Phys. Med. Biol, under revision

In progress :

• 3D reconstruction (CPPM post-doc)

NB: A very poor energy resolution is enough to get those sensitivities

Introduction	New imaging modality: Prompt Gamma Time Imaging	Conception of TIARA detection system	Conclusion
		0000000	

3 Conception of TIARA detection system Crystal optimization

Photodetector characterization

Introduction	New imaging modal	ity: Prompt Gamma Time Imaging	Conception of TIARA detection system	Conclusion
0000	00000		0000000	0
PGTI d	letection:	Crystal		

Ideal crystal: fast and dense

	Scintillators	Cerenkov radiators
Energy resolution	+	-
Time resolution	+	++
Density	+	++

Introduction 0000	New imaging modal	ity: Prompt Gamma Time Imaging	Conception of TIARA detection system	Conclusion O
PGTI d	etection:	Crystal		

Ideal crystal: fast and dense

	Scintillators	Cerenkov radiators
Energy resolution	+	-
Time resolution	+	++
Density	+	++

Optimization of a Cerenkov detector:

 Geometry 	Coating	Black painting	Teflon
 Coating 	Features	absorption	reflection
Photodetector	Energy resolution		-
 Crystal type 	Time resolution	++	+
 Optical coupling 	Detection efficiency	-	++

Introduction	New imaging modality: Prompt Gamma Time Imaging
0000	00000

Conclusion

Optical coating simulations

Length variation (1 to 3 cm)

Criteria under studies

Energy resolution: deposited energy in a $1 \text{ cm}^3 \text{ PbF}_2$ crystal for a 4.4 MeV PG

Time resolution: rms of 1st optical photon TOF distribution

Detection efficiency = $\varepsilon_{geo} \times P_{int} \times P_{opt} \times PDE$

- ε_{geo} : geometrical efficiency
- P_{int}: probability of a 4.4 MeV PG interaction
- Popt: probability to detect at least 2 Cerenkov photons
- PDE: probability of optical photon detection

troduction	New imaging modality	7: Prompt Gamma	Time Imaging

Conclusion

Teflon coating optimization

Optimization of a black painting-coated $${\rm PbF}_2$$

 Correlation deposited energy/detected Cerenkov
 Introduction
 New imaging modality: Prompt Gamma Time Imaging

 0000
 00000

Conception of TIARA detection system

Conclusion

Teflon coating optimization

Optimization of a black painting-coated PbF_2

- Correlation deposited energy/detected Cerenkov
- Proportional increase of efficiency

Introduction New imaging modality: Prompt Gamma Time Imaging Conception of TIARA detection system 00000000

2.5

3.0

Conclusion

100

80

8

Relative detection efficiency

Teflon coating optimization

Introduction	New imaging modality: Prompt Gamma Time Imaging
0000	00000

Conclusion

Black painting coating optimization

Optimization of a black painting-coated $${\rm PbF}_2$$

 No correlation deposited energy/detected Cerenkov
 Introduction
 New imaging modality:
 Prompt Gamma Time Imaging

 0000
 00000
 00000

Conception of TIARA detection system

Conclusion

Black painting coating optimization

Optimization of a black painting-coated $${\rm PbF}_2$$

 No correlation deposited energy/detected Cerenkov Conception of TIARA detection system

Conclusion

Black painting coating optimization

Optimization of a black painting-coated $$\mathsf{PbF}_2$$

- No correlation deposited energy/detected Cerenkov
- Short crystal of big section

 Introduction
 New imaging modality: Prompt Gamma Time Imaging

 0000
 00000

Conception of TIARA detection system

Black painting coating optimization

Introduction	New imaging modality: Prompt Gamma Time Imaging	Conception of TIARA detection system	Conclusion
		0000000	

- Crystal optimization
- Photodetector characterization

Photodetection: Silicon Photo Multiplier (SiPM)

SiPM: SPAD in parallel mode V_{bias} ≷⊀ Rquench

SiPM characterization

- Breakdown Voltage (BV) estimation ⇒ SiPM working in Geiger-mode
- OverVoltage (OV)= Bias Voltage BV \Rightarrow OV optimization: Improvement of the SiPM time resolution

 Introduction
 New imaging modality:
 Prompt Gamma Time Imaging

 0000
 00000

Conception of TIARA detection system

Photodetection: Silicon Photo Multiplier (SiPM)

SiPM: SPAD in parallel mode

SiPM characterization

- Breakdown Voltage (BV) estimation ⇒ SiPM working in Geiger-mode
- OverVoltage (OV)= Bias Voltage BV
 ⇒ OV optimization: Improvement of the SiPM time resolution

SiPM time resolution function of the number of detected optical photon 15/19

Introduction	New imaging	modality:	Prompt	Gamma	Time	Imaging

Experimental set-up

Experiment features

- Pulsed laser diode (14 ps rms)
- SiPM (Hamamatsu/FBK)
- Lecroy oscilloscope
 - 1GHz bandwidth
 - 100 ps sampling

Experiment realised at the SDI

Introduction	New imaging	modality:	Prompt	Gamma	Time	Imaging

Conclusion

Experimental set-up

Experiment features

- Pulsed laser diode (14 ps rms)
- SiPM (Hamamatsu/FBK)
- Lecroy oscilloscope
 - 1GHz bandwidth
 - 100 ps sampling

Measurement principle

Trigger on the diode pulse emission

• Measurement of a Δt between the 2 SiPM signals

$$\sigma_{\Delta t}^2 = 2(\sigma^2_{\mathsf{SiPM}} + \sigma^2_{\mathsf{preamplifier}} + \sigma^2_{\mathsf{laser}})$$

Assuming σ_{laser} negligible: $\sigma_{\Delta t} = \frac{\sigma_{\Delta t}}{\sqrt{2}}$

Experiment realised at the SDI

Introduction	New imaging modality: Prompt Gamma Time Imaging	Conception of TIAR
0000	00000	00000000

A detection system

Conclusion

Results

OV optimization: Single Photon Time Resolution (SPTR) measurement

- Data selection: 1 photon for both SiPMs
- SPTR \approx 100 150 ps rms

Introduction	New imaging modality: Prompt Gamma Time Imaging	Conception of TIAF
		00000000
_		

TIARA detection system Co

Results

Introduction	New imaging modality:	Prompt Gamma	Time Imaging
0000	00000		

Detector development summary

Simulation: Measurement of the **crystal intrinsic time resolution** function of geometry and coating

Experiment: Determination of **photo detector time resolution** function of the number of detected photon

In progress:

Combination of experimental and simulation results

Assessment of other crystal parameters

- Crystal type (PbWO₄)
- Crystal/photo detector optical coupling

Cerenkov radiator/SiPM coupling and measurement of the coincidence time resolution with a $\rm Co^{60}$ source

Combination of crystal + photodetector to test under proton beam

Introduction	New imaging modality: Prompt Gamma Time Imaging	Conception of TIARA detection system	Conclusion
			•

Introduction

2 New imaging modality: Prompt Gamma Time Imaging

Conception of TIARA detection system

- Crystal optimization
- Photodetector characterization

Introduction	New imaging modality:	Prompt Gamma Time Im	aging Conception of TIARA detec	tion system Conclusion
0000	00000		0000000	•
Conclus	sion			

Proof of concept of the PGTI potential in terms of sensitivity to longitudinal and transverse proton beam deviations

Preliminary characterization of the pixel design (simulations + laboratory experiments)

Perspectives

Beam Test (Centre Antoine Lacassagne/Arronax) to test different selected detector configurations

Global TIARA simulations including :

- Realistic detector design
- Realistic patient anatomy (voxelized images provided by the Centre Antoine Lacassagne)