PhD seminar

Searches for dark matter as WIMPs and Kaluza-Klein axions with the MIMAC detector

Cyprien BEAUFORT

Under the supervision of Daniel SANTOS

- 18th of March 2021 -

The dark matter problem

- There are multiple observations of gravitational effects at multiple scales that can be explained if an unknown matter populates the Universe
 Dark matter hypothesis
- The detection of a dark matter particle would be a **crucial discovery** for the understanding of the Universe

What is dark matter made of?

- Particles of the Standard Model are ruled out
- A candidate must be massive, no electric charge, no color, stable or long-lived ⇒ Zoo of candidates!

With MIMAC we search for:

- WIMP \leftarrow The most studied candidate
- Kaluza-Klein axion \leftarrow A pretty new theory (2000's)

WIMP	 Strategy of detection The MIMAC detector Comimac
DIRECTIONALITY AT HIGH GAIN	StatementSimulations
Kaluza-Klein axions as a probe for extra dimensions	 Theoretical aspects Experimental aspects Model revision

WIMP

WIMP = Weakly Interacting Massive Particle

• A class of particles that interact only through the weak nuclear force and gravitation

- The WIMP would produce an elastic collision on a target nucleus **inside** the detection volume
- Measurement of the energy of the induced nuclear recoil

WIMP - Strategy of detection (2/2)

The WIMPs form a static halo surrounding the galaxies:

- They enter the detector with a favoured direction
- This anisotropy gives a unique signature
- Measuring the direction of the nuclear recoil enables to overpass the irreducible background and is mandatory for an unambiguous detection

```
\iff Principle of directional detection
```

WIMP induce the same signal than:

Galactic map of the WIMP angular distribution Tao, Beaufort et al., 2003.1181

MIMAC = MIcro-TPC MAtrix of Chambers

- Directional detector developed at LPSC
- Gaseous detector \rightarrow we can easily adapt the properties (target mass, spin, pressure) to confirm possible candidates
- Measure simultaneously the energy and the 3D track in an adaptable energy range $\ [150\,\text{eV}, 30\,\text{MeV}]$
- Sampling at $50 \mathrm{MHz} (20 \mathrm{ns})$
- Based on a Micromegas with a pixelated anode

WIMP - The MIMAC detector (2/3)

C

WIMP

MIMAC bi-chamber

Anode

MIMAC bi-chamber

Anode

MIMAC bi-chamber

MIMAC bi-chamber

Anode

MIMAC bi-chamber

Anode

WIMP - The MIMAC detector (3/3)

 \longrightarrow Sampling every 20 ns

WIMP - Comimac

$$\label{eq:COMIMAC} \begin{split} & \mathrm{COMIMAC} = \text{source of ions and electrons of} \\ & \text{known kinetic energy} \end{split}$$

- $E_K \in [150 \,\mathrm{eV}, \, 30 \,\mathrm{keV}]$
- Accurate tool: $\delta E_K \sim 1\%$
- Developed at LPSC

USED FOR:

- Calibration
- Physical measurements (track length, straggling, diffusion)
- lons/electrons comparison

QUENCHING FACTOR:

- $Q = E_{ioni}/E_K = f(E_K, Z, p, \text{ gas})$
- Crucial measurements to determine the kinetic energy of a recoil from the measured ionization energy

Directionality at high gain

Directionality at high gain - Statement (1/2)

At low gain, for $E_K > 20 \text{ keV}$ we have demonstrated that MIMAC can achieve directionality with a good angular resolution.

The goal is to cover the low energy range $E_{\text{Recoil}} \in [1 \text{ keV}, 20 \text{ keV}]$ for which there is a lack of experimental searches.

- \Rightarrow Low energy \iff Shorter tracks \iff Less directional information
- \Rightarrow We must work at high gain

We wrote 2 papers showing high-gain measurements with $E_K \in [6 \text{ keV} , 26 \text{ keV}]$:

- 3D tracks reconstruction (Tao, Beaufort *et al.*, **2021**, published in NIM-A)
- Angular resolution (Tao, Beaufort *et al.*, submitted to NIM-A)

 \implies My main contribution for those papers was to simulate the setup and to compare to the measurements

3D track of a $6.32 \,\mathrm{keV}$ Fluorine

The results in our papers are pretty good and unique (3D tracks at low energy) but we observed an elongation of the measured tracks that required a correction

EVIDENCE FOR A NON-LINEAR EFFECT AT HIGH-GAIN:

- The correction applied behaves as if the drift velocity was changing all along the arrival of charges
- We described precisely the phenomenon by performing several experiments with Comimac
 - \implies we determined an empirical correction for the papers
 - \Longrightarrow we still needed to understand the physics behind this non-linearity

 \implies What is it? How does it impact the directionality?

Directionality at high gain - Simulations (1/3)

SIMULATIONS:

- As far as we know there is no tool to simulate the motion of charges taking into account the induced EM field.
- I have implemented a library that simulates in 2D all the steps from the primary ionisation to the signal formation. The motion of electrons (drift and avalanche) is deeply inspired by the *Garfield++*'s source code
- At each timestep, the induced electromagnetic field is computed from the position of all the charges in the gap and the particles are drifted (or avalanched) accordingly.

Directionality at high gain - Simulations (2/3)

- Video of the motion of charges -

 \implies In the simulations, the local distortions of the electromagnetic field are not strong enough to explain the measurements

 \implies The long simulation work leaded to another hypothesis

Directionality at high gain - Simulations (3/3)

CURRENT INDUCED BY THE IONS:

• Ramo theorem:

$$i(t) = \sum_{k=i,e} q_k \mathbf{E}_{w,k} \cdot \mathbf{v}_k$$

with $\mathbf{v}_e \sim 10^3 \, \mathbf{v}_i$

• lons induce less current than electrons but they remain longer in the gap

SUMMARY OF DIRECTIONALITY AT HIGH GAIN:

- At high-gain it seems that we get sensitive to the current induced by the ions
- The simulations reproduce the measured elongations of the track
- This hypothesis must be validated on other measurements
- We will study how to improve the angular resolution within this hypothesis
- Final validation with a beam of 8 keV neutrons (they induce the same signal than WIMPs). *Experiment in May 2021 with the AMANDE facility at Cadarache.*

Kaluza-Klein axions

EXTRA SPATIAL DIMENSIONS:

- Assume there are n extra spatial dimensions compactified with radius $R < 30\,\mu{\rm m}$
- Axions can propagate in $\delta < n$ extra dimensions
- Framework proposed in the 90's to solve the hierarchy problem (among other features)

Why such a framework?

n = 1

n = 6

- Theoretically motivated
- Why not? ;) \longrightarrow extra spatial dimensions are experimentally allowed
- Opens up the window for axions searches with a MIMAC-like detector
 - Without extra dimensions, event in the case of Axion-Like Particles (ALP), our detection window is excluded by astrophysical constraints (from *Extragalactic Background Light*)

AXION IN EXTRA DIMENSIONS:

- The axion is a hypothetical particle postulated to solve the Strong CP problem. It is also a good DM candidate
- From our 4-dimensional world, the (4+ δ)-axion is seen as an almost infinite superposition of state called a Kaluza-Klein (KK) tower

$$\mathcal{L} \supset \frac{g_{a\gamma\gamma}}{4} a F^{\mu\nu} \tilde{F}_{\mu\nu} \xrightarrow{(4+\delta) \text{ axion seen}} \frac{g_{a\gamma\gamma}}{4} \left(\sum_{n=0}^{\infty} r_n a_n\right) F^{\mu\nu} \tilde{F}_{\mu\nu}$$

CONSEQUENCES:

- KK axions would be produced in the Sun with $m_a^{KK} \in [1 \ \rm keV \,, \, 30 \ \rm keV]$
- In comparison with the standard QCD case, the KK axions are significantly more massive, more abundant, and with shorter lifetimes
 - \Longrightarrow Opens the detection channel via the decay $a \to \gamma \gamma$
 - $\Longrightarrow \mathsf{K}\mathsf{K}$ axions can be used as a probe for extra dimensions

TRAPPED KK AXIONS:

Some of the KK axions produced in the Sun are sufficiently non-relativistic to be **trapped into the solar gravitational field**. They will then start to orbit the Sun and they accumulate over the Sun history.

Orbits of trapped KK axions. In unit of solar radius.

$a \rightarrow \gamma \gamma$ signature:

- 2 photons of same energy emitted back-to-back \implies photoelectric effect
- Search for 2 electrons of same energy $(\sim 4\,{\rm keV})$ close to each other

 \implies Unambiguous signature, almost no background event can reproduce such signal \implies From Monte Carlo simulations, we estimate 70% of efficiency of detection $_{17/21}$

NEED FOR A MODEL REVISION:

There is a dozen of theoretical papers about KK axions but **only one article about trapped KK axions**: DiLella & Zioutas, 2003. This paper pioneers the model however it is somehow cryptic with few equations, it contains almost no details about how the main results are derived and the results are model-dependent.

Some detectors use the D&Z model to search for KK axions: DRIFT, XMASS, News-G

OUR CONTRIBUTIONS TO THE MODEL:

- Derive analytically all the D&Z results to cross-check them and to obtain model-independent expressions
- Update the astrophysical constraints with recent measurements

ORGANISATION:

We work with **Mar Bastero-Gil**, a theoretician from the Granada University

- Mar derives the expressions
- I implement Monte Carlo simulations to cross-check the main results

KK axions - Model revision (2/3)

MAIN CONSTRAINT: THE SOLAR FLUX OF PHOTONS

The decay of trapped KK axions would contribute to the solar flux of photons. It should not exceed the measurements.

- ⇒ Preliminary results (to be confirmed)
- \implies The D&Z model seems ruled out
- \Longrightarrow The coupling to photons $g_{a\gamma\gamma}$ must be reduced to fulfil the constraint
 - \implies Reduce the event rate in a detector

19 / 21

MAIN RESULTS ON KK AXIONS:

- We have entirely revised the model
- We reduce the D&Z event rate by 2 orders of magnitude
- The event rate would be $R \sim 1 \text{ event/year/m}^3$
 - \Longrightarrow recent result, to be confirmed
- Challenging but conceivable in a large MIMAC-like detector ($50\,{\rm m}^3,$ same volume than for WIMP searches)

Conclusion

Conclusion

SUMMARY:

- MIMAC is a directional detector that can simultaneously search for low-mass WIMPs and Kaluza-Klein axions
- At high gain (for the low energies), the detector suffers from a non-linear phenomenon

 \Longrightarrow I have implemented a simulation library that gave us a promising explanation

• With Mar Bastero-Gil we have entirely revised the solar KK axions model \implies the event rate reduces significantly

OUTLOOK:

- Confirm the final result about KK axions and publish the revision of the model
- Use my simulation toolkit to explain the non-linearities at high gain
 - \implies Compare with neutron data
 - \Longrightarrow Main goal of my thesis: to show the directional performances at high gain
- Publish measurements (Quenching factor) for the News-G collaboration \implies draft half written
- Show 3D electron tracks below 500 eV and how we can use them as counters of primary electrons (with an intern student coming this summer)

Backup

Directionality

Figure 12. From left to right : WIMP angular distribution, WIMP-induced recoil angular distribution with perfect resolution and with finite resolution (15°). Top: Pure halo component model with r = 0.0. Bottom: Two-component model with r = 0.5.

Tao, Beaufort et al., 2003.11812

According to J. Billard (ex PhD student in the MIMAC team), the detection of 50 WIMP events is enough to distinguish from any background signal $$^{21\,/\,21}$$

Directionality at high gain - Gain curve

- When we applied a correction (obtained from the charge measurements) we can almost recover the expected plateau and we can match the simulated data.
- The correction applied behaves as if the drift velocity was decreasing all along the arrival of charges

\Longrightarrow Evidence for a non-linear effect that depends on the gain

 \implies What is it? How does it impact the directionality? Can we correct it?

Directionality at high gain - Non-linearity

CURRENT INDUCED BY THE IONS:

• Ramo theorem:

$$i(t) = \sum_{k=i,e} q_k \mathbf{E}_{w,k} \cdot \mathbf{v}_k$$

with $\mathbf{v}_e \sim 10^3 \, \mathbf{v}_i$

• lons induce less current than electrons but they remain longer in the gap

Charge on the central strip (#127)

High gain

 \implies more ions in the gap

 \implies larger ionic current

 \implies the charge remains longer

above the strip threshold

 \implies measures a longer track

 \implies we can reproduce the measured non-linearities $_{21/21}$

KK AXIONS DENSITY:

 \implies We obtain a factor $\mathcal{O}(50)$ less than D&Z

Backup - News-G principles

NEWS-G:

- Spherical detector (simple concept)
- Low threshold $10 \, \mathrm{eV}$
- Non-directional
- Gaseous (CH₄ or Ne mixtures)
- Large mass $(1.4 \,\mathrm{m^3}$ at 3 bar)
- Will take data in a few months

Complementarity between MIMAC and News-G:

- Both search for low-energetic events
- News-G will explore the low-mass WIMP region which is still unknown. If it detects something, a directional detector (as MIMAC) would be required to confirm the detection
- We compare some measurements in the 2 detectors

Backup - News-G Quenching factor

IONIZATION QUENCHING FACTOR:

- $Q = E_{ioni}/E_K$
- $Q = f(E_K, Z, p, \text{gas})$
- Crucial measurements to determine the kinetic energy of a recoil from the measured ionization energy
- We use Comimac to measure the Quenching factor

- As usual, we measure a Quenching factor lower than the SRIM simulation
- Our measurements are still discussed in the News-G collaboration
- We have shown some non-linearities in the News-G detector probably due to a space-charge effect
- \implies Comparing the behaviours of News-G and MIMAC shines light on some issues