

Beyond the Standard Model: phenomenology and LHC constraints of exotic dark matter

Gaël Alguero

LPSC Grenoble & LAPTh Annecy

Mid-thesis presentation, March 25, 2021

Supervised by Sabine Kraml and Genevieve Belanger

- From dark matter to LHC
- Setting constraints with SModelS and Madanalysis5
- Probing exotic dark matter (work in progress)

G.A., Araz, Fuks, Kraml, Waltenberger, Les Houches 2019 proceedings, contribution 15 [arXiv] G.A., Kraml, Waltenberger, CPC 264 (2021) 107909 [arXiv] G.A., Heisig, Khosa, Kraml, Kulkarni, Lessa, Neuhuber,

Reyes-González, Waltenberger, Wongel, TOOLS 2020 proceedings [arXiv]

Evidences for dark matter (DM)

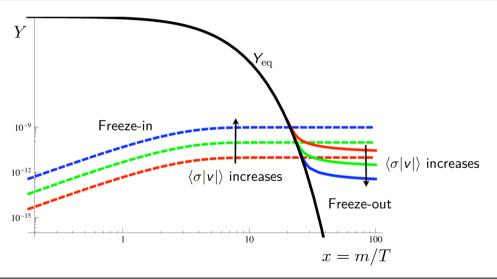
From dark matter to LHC

- Many evidences hinting for a missing mass
 - Galaxy rotation curves
 - Galaxy clusters
 - Gravitational lensing
 - And others
- Must be massive, weakly interacting, dark

The DM theory landscape

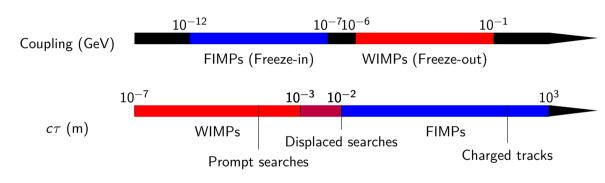
From dark matter to LHC

Mid-thesis presentation, March 25, 2021

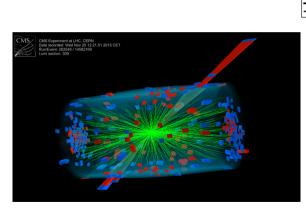


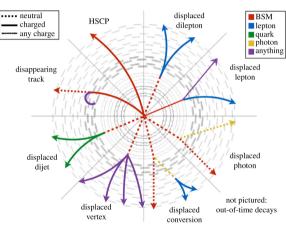
Nature 562, 5156 (2018)

Dark matter production in the universe


From dark matter to LHC

WIMPs, FIMPs and beyond


From dark matter to LHC



At the LHC: Missing energy and long lived signatures

From dark matter to LHC

How to use LHC results?

Setting constraints with SModelS and Madanalysis5

Mid-thesis presentation, March 25, 2021

- $\blacksquare \ \, \mathsf{Monte} \ \, \mathsf{Carlo} \ \, \mathsf{event} \ \, \mathsf{generation} \, + \, \mathsf{detector} \ \, \mathsf{simulation} \ \, \mathsf{(MadGraph} \, + \, \mathsf{MadAnalysis)}$
 - simulate the whole collision, detector effects and selection cutflow
 - captures differences in kinematical distributions
 - more generally applicable
 - very CPU-time consuming
- Using simplified model results (SModelS)
 - uses the efficiencies provided by experimentalists
 - assumes the cut acceptances are approx. the same as in the simplified models
 - much faster
 - suitable for large scans

G.A., Araz, Fuks, Kraml, Waltenberger, Les Houches 2019 proceedings, contribution 15 [arXiv] G.A., Kraml, Waltenberger, CPC 264 (2021) 107909 [arXiv] G.A., Heisig, Khosa, Kraml, Kulkarni, Lessa, Neuhuber,

Reyes-González, Waltenberger, Wongel, TOOLS 2020 proceedings [arXiv

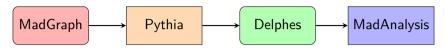
How to use LHC results?

Setting constraints with SModelS and Madanalysis5

Mid-thesis presentation, March 25, 2021

- $\blacksquare \ \, \mathsf{Monte} \ \, \mathsf{Carlo} \ \, \mathsf{event} \ \, \mathsf{generation} \, + \, \mathsf{detector} \ \, \mathsf{simulation} \ \, \mathsf{(MadGraph} \, + \, \mathsf{MadAnalysis)}$
 - simulate the whole collision, detector effects and selection cutflow
 - captures differences in kinematical distributions
 - more generally applicable
 - very CPU-time consuming
- Using simplified model results (SModelS)
 - uses the efficiencies provided by experimentalists
 - assumes the cut acceptances are approx. the same as in the simplified models
 - much faster
 - suitable for large scans

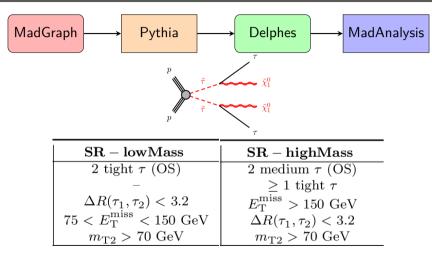
G.A., Araz, Fuks, Kraml, Waltenberger, Les Houches 2019 proceedings, contribution 15 [arXiv] G.A., Kraml, Waltenberger, CPC 264 (2021) 107909 [arXiv] G.A., Heisig, Khosa, Kraml, Kulkarni, Lessa, Neuhuber,


Reyes-González, Waltenberger, Wongel, TOOLS 2020 proceedings [arXiv]

Recasting workflow

Setting constraints with SModelS and Madanalysis5

 $\label{eq:mid-thesis} \mbox{ Mid-thesis presentation, March 25, $2021}$


ATLAS-SUSY-2018-04

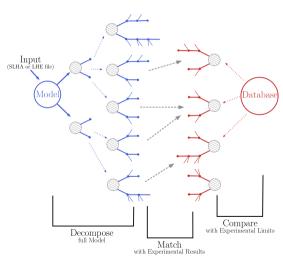
Recasting workflow

Setting constraints with SModelS and Madanalysis5

Mid-thesis presentation, March 25, 2021

ATLAS-SUSY-2018-04

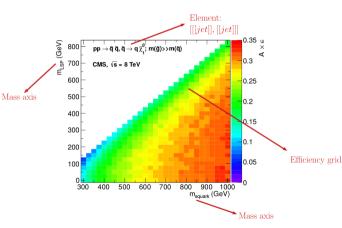
Re-using simplified model results: SModelS



Setting constraints with SModelS and Madanalysis5

Mid-thesis presentation, March 25, 2021

- Based on a general procedure to decompose BSM collider signatures featuring a \mathbb{Z}_2 -like symmetry into simplified-model topologies
- Large database of simplified-model results (currently \sim 100 ATLAS ans CMS searches)
- New generic treatment of width-dependent results with a variety of LLP analyses


See online SModelS documentation at smodels.readthedocs.io

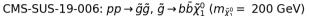
Setting constraints with SModelS and Madanalysis5 Mid-thesis presental

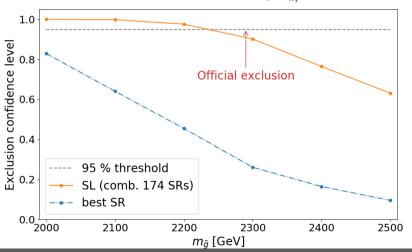
- Upper limit (UL)
 - Constrains $\sigma \times \prod_i BR_i$
 - Only binary decision
- Efficiency map (EM)
 - Allows to sum contributions from several topologies
 - Can compute a likelihood (confidence level)

Combining signal regions (SRs)

Setting constraints with SModelS and Madanalysis5

Mid-thesis presentation, March 25, 2021


- For a proper statistical evaluation
 - need to compute a likelihood
 - without specific likelihood information : can only compute for each signal region (SR)


$$\mathcal{L}(\mu, \theta | D) = \frac{(\mu s + b + \theta)^{n_{obs}} e^{-(\mu s + b + \theta)}}{n_{obs}!} \exp\left(-\frac{\theta^2}{2\delta^2}\right)$$

 \Rightarrow use the "most sensitive" SR

- Simplified likelihoods : global background uncertainty [CMS-NOTE-2017-001]
 - summarized into a covariance matrix
 - one Gaussian error for each SR
- Full likelihoods : full statistical descriptions of analyses [ATL-PHYS-PUB-2019-029]
 - encapsulate the detailed information about the analysis (detailed systematic uncertainties)
 - reproduces exactly the experimental analysis and allows for a more precise reinterpretation

Setting constraints with SModelS and Madanalysis5

Les Houches 2019 proceedings, contribution 15 [arXiv]

- CMS-SUS-16-039
- CMS-SUS-17-001
- CMS-SUS-19-006
- CMS-SUS-16-048

Full ATLAS likelihoods

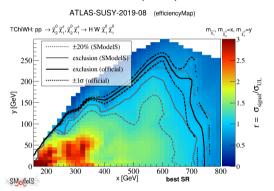
Setting constraints with SModelS and Madanalysis5

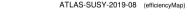
Mid-thesis presentation, March 25, 2021

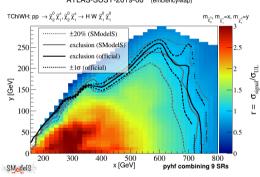
- Serialization of HistFactory workspaces under the JSON format
- Provides observed signals, expected backgrounds and systematic uncertainties as in the experimental analysis
- Can be used in RooFit or pyhf
 (a pure-python implementation of HistFactory)

ATL-PHYS-PUB-2019-029

```
"channels": [
   "name": "SR1cut cuts".
   "samples": [=
                                  Signal regions
   "name": "SR2cut cuts",
   "samples": [
       "data": [
         2.570836067199707
                                  Background
       "modifiers": [-
       "name": "Boson Staus"
                                  contributions
       "data": [
         0.044047050178050995
       "modifiers": [=
       "name": "Z Staus"
```


Implementation of a SModelS interface to pyhf




Setting constraints with SModelS and Madanalysis5

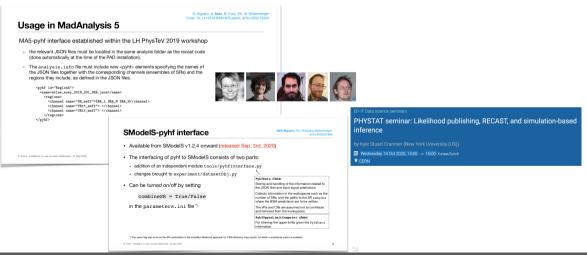
Mid-thesis presentation, March 25, 2021

CPC 264 (2021) 107909 [arXiv] and TOOLS2020 proceedings [arXiv]

Standard "best SR" procedure

pyhf likelihoods

⇒ ATLAS-SUSY-2018-04, ATLAS-SUSY-2018-31 and more to come


Cited in CERN seminar by Kyle Cranmer

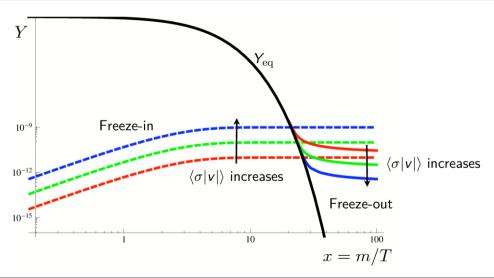
Setting constraints with SModelS and Madanalysis5

Mid-thesis presentation, March 25, 2021

USAGE IN PHENO RECASTING TOOLS

Outline

Probing exotic dark matter (work in progress)


1 From dark matter to LHC

2 Setting constraints with SModelS and Madanalysis5

3 Probing exotic dark matter (work in progress)

Probing exotic dark matter (work in progress)

Probing exotic dark matter (work in progress)

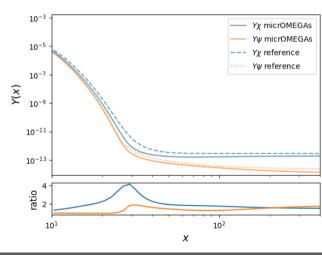
- Standard freeze-out equation $\dot{n}_{\chi} + 3Hn_{\chi} = -\langle \sigma | v | \rangle \left(n_{\chi}^2 n_{\chi, \mathrm{eq}}^2 \right)$
- Freeze-in
- $$\begin{split} & \text{coscattering} \\ & \dot{n}_{\psi} + 3Hn_{\psi} = -\langle \sigma | v | \rangle \left(n_{\psi}^2 n_{\psi, \text{eq}}^2 \right) \\ & \Gamma_{\psi \to \chi} \left(n_{\chi} n_{\psi} \frac{n_{\chi}^{\text{eq}}}{n_{\psi}^{\text{eq}}} \right) \\ & \dot{n}_{\chi} + 3Hn_{\chi} = \Gamma_{\psi \to \chi} \left(n_{\chi} n_{\psi} \frac{n_{\chi}^{\text{eq}}}{n_{\psi}^{\text{eq}}} \right) \end{aligned}$$

$$\chi$$
 SM SM χ SM χ SM

SM

SM

 χ : dark matter


 ψ : heavier odd particle

R.T.D'agnolo et al., Phys. Rev. Lett. 119, 061102 (2017) [arXiv] M.Garny et al., Phys. Rev. D 96, 103521 (2017) [arXiv]

 $M = 500 \text{ GeV}, m = 490 \text{ GeV}. \theta = 1.22 \times 10^{-6}$

- Testing coscattering with a Singlet-Triplet model
 - Standard Model $+\chi^0 + \{\psi^0, \psi^{\pm}\}\$
- with a compressed spectrum
 - small mass splitting
 - small couplings

F.Brümmer, JHEP 2001 (2020) 113

[arXiv]

Scotogenic model

Probing exotic dark matter (work in progress)

Mid-thesis presentation, March 25, 2021

Ernest Ma, Phys.Rev.D73:077301,2006 [arXiv]

- Standard Model extended with
 - an inert Higgs doublet
 - and right-handed neutrinos

$$\begin{pmatrix} H_1^{\pm} \\ H_1^{0} \end{pmatrix}, \begin{pmatrix} H_2^{\pm} \\ H_2^{0} \end{pmatrix}, \begin{pmatrix} N_1 \\ N_2 \\ N_3 \end{pmatrix}$$

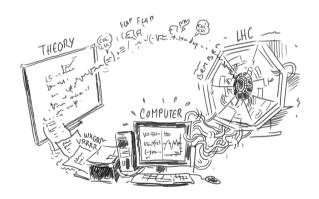
• odd under a \mathbb{Z}_2 -symmetry

Field	Generations	$SU(3)_c$	$\mathrm{SU}(2)_{\mathrm{L}}$	$U(1)_{Y}$	\mathbb{Z}_2
ℓ_{L}	3	1	2	-1/2	+
e_R	3	1	1	-1	+
H_1	1	1	2	1/2	+
H_2	1	1	2	1/2	_
N	3	1	1	0	_

$$H_1 \xrightarrow{\mathbb{Z}_2} H_1$$

$$H_2 \xrightarrow{\mathbb{Z}_2} -H_2$$

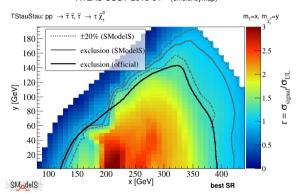
- radiative neutrino masses
- provides different DM candidates
 - different production mechanisms (freeze-in, freeze-out, ...)
 - probe with the appropriate LHC signatures (prompt, long-lived, ...)


Conclusions

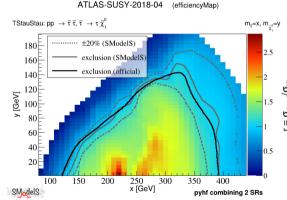
Probing exotic dark matter (work in progress)

- simplified likelihoods implemented in MadAnalysis5
 - ability to use CMS covariance matrices
 - database extended with all usable covariance matrices
- SModelS/pyhf interface from SModelS v1.2.4 onwards
 - ability to use full likelihoods from ATLAS
 - lacktriangle added EMs + JSON files for three 139 fb⁻¹ analyses
- more accurate reinterpretations, more reliable statistical evaluation e.g. for fits
- work in progress
 - coscattering in micrOMEGAs
 - scotogenic model

Thanks for your attention!



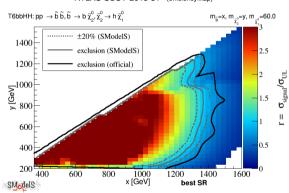
©Lison Bernet


Backups

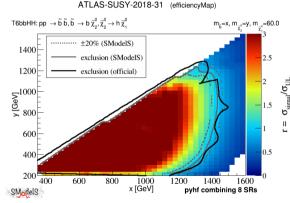
arXiv:2009.01809 (pyhf interface)

ATLAS-SUSY-2018-04 (efficiencyMap)

ATI AS-SUSY-2018-04


Standard "best SR" procedure

pyhf likelihoods


Backups

arXiv:2009.01809 (pyhf interface)

ATLAS-SUSY-2018-31 (efficiencyMap)

ATLAS-SUSY-2018-31

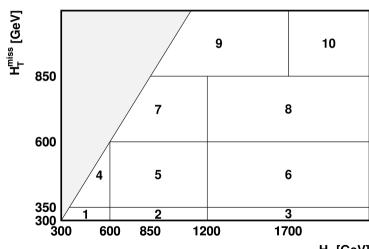
Standard "best SR" procedure

pyhf likelihoods

$$p(n, a|\eta, \chi) = \prod_{\substack{c \in channels \ b \in bins}} \operatorname{Pois}\left(n_{cb}|\nu_{cb}(\eta, \chi)\right) \underbrace{\prod_{\chi} c_{\chi}(a_{\chi}|\chi)}_{\text{Constraints}}$$
(1)

relates the observed events and auxiliary data (n, a) to the free and constrained parameters (η, χ)

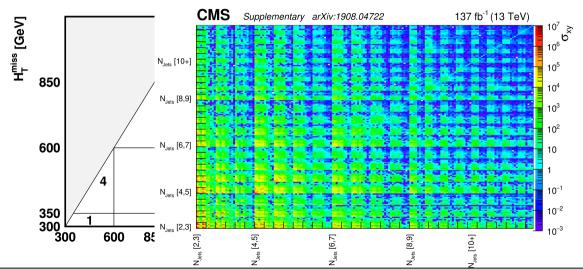
$$\nu_{cb}(\eta,\chi) = \sum_{s \in samples} \nu_{scb}(\eta,\chi) = \sum_{s \in samples} \underbrace{\prod_{\kappa} \kappa_{scb}(\eta,\chi)}_{\text{Mujtiplicative modifiers}} \left(\nu_{scb}^{0}(\eta,\chi) + \underbrace{\sum_{\Delta} \Delta_{scb}(\eta,\chi)}_{\text{Additive modifiers}} \right)$$

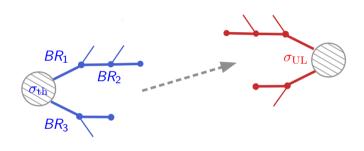

ATL-PHYS-PUB-2019-029

Backups

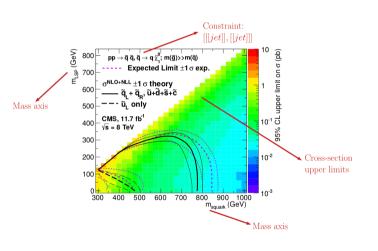
$$\mathcal{L}(\mu,\theta|D) = \prod_{i=1}^{N} \frac{(\mu s_i + b_i + \theta_i)^{n_{obs}^i} e^{-(\mu s_i + b_i + \theta_i)}}{n_{obs}^i!} e^{-(\mu s_i + b_i + \theta_i)} e^{-(\mu s_i + b_i + \theta_i)}$$

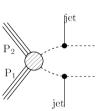
with a product over all N SRs where V is the covariance matrix


Backups


CMS-SUS-19-006 covariance matrix

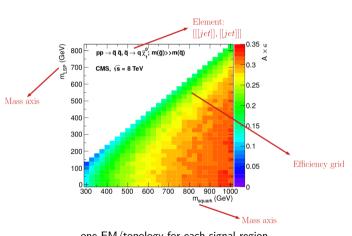
Backups Mid-thesis presentation, March 25, 2021

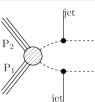




$$\sigma_{\rm th} \times \textit{BR}_1 \times \textit{BR}_2 \times \textit{BR}_3$$
 to compare with $\sigma_{\rm UL}$

Backups Mid-thesis presentation, March 25, 2021



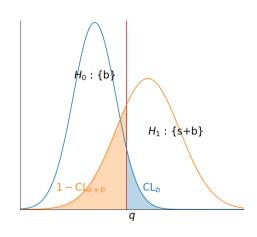

- Constrains $\sigma \times \prod_j BR_j$ per topology
- Only binary decision : excluded or not

Backups Mid-thesis presentation, March 25, 2021

one EM/topology for each signal region

- Constrains $\sum_{i} A_{i} \epsilon_{i} \times \sigma_{i} \times \prod_{i} BR_{i}$ per signal region
- Can sum contributions from several topologies
- Can compute a likelihood (exclusion confidence level) Efficieny map

Mid-thesis presentation, March 25, 2021


Backups

- Testing hypothesis H_0 : {only background} against H_1 : {background + new signal}
- Definition of a log likelihood ratio

$$q = -2\log\left(rac{\mathcal{L}(\mathrm{data}|H_1)}{\mathcal{L}(\mathrm{data}|H_0)}
ight)$$

■ Computing a robust p-value ratio

$$CL_s = \frac{CL_{s+b}}{CL_b}$$

$$N = A \epsilon \sigma f$$

- lacksquare A and ϵ : acceptance and efficiency
- lacksquare σ and $\mathcal L$: cross section and integrated luminosity