Introduction	The Renormalization Group	PyR@TE 3	An asymptotically safe $SO(10)$ model

The Renormalization Group and its applications for physics beyond the Standard Model

Lohan Sartore

PhD supervisor: Ingo Schienbein

LPSC, March 25, 2021

An asymptotically sale bo(10) model

- 2 The Renormalization Group
- 3 PyR@TE 3
- 4 Application: an asymptotically safe SO(10) model

Introduction	The Renormalization Group	PyR@TE 3	An asymptotically safe $SO(10)$ model
•0			

Introduction

The Standard Model and beyond

More generally: is there a reason why the parameters of the SM take their observed values?

Lohan Sartore - LPSC

Introduction	The Renormalization Group	PyR@TE 3	An asymptotically safe $SO(10)$ model
00	00000	000000	000000000

The Renormalization Group

Introduction	The Renormalization Group	PyR@TE 3	An asymptotically safe $SO(10)$ model
	00000		
Renormali	zation in perturbative (JET	

Physical quantities are computed according to a perturbative expansion (around the non-interacting theory)

- **Renormalization**: Get a well-behaved theory despite the presence of divergences
- Regularization:
 - Split divergences into a finite + infinite part
 - This decomposition is not unique: various renormalization schemes
 - Introduction of an arbitrary energy scale (UV cutoff Λ , renormalization scale μ , ...)
- Renormalization group equations: Some quantities (observables, bare couplings) do not depend explicitly on μ

$$\frac{d}{d\mu}\left\{\cdots\right\} = 0$$

E uromalau			al a l
00	00000	000000	000000000
Introduction	The Renormalization Group	PyR@TE 3	An asymptotically safe $SO(10)$ model

Example: Running couplings in the Standard Model

Renormalization group equations: Some quantities (observables, bare couplings) do not depend explicitly on μ

$$\frac{d}{d\mu}\left\{\cdots\right\} = 0$$

Direct consequence: the couplings of the theory acquire a dependence on μ

$$\frac{dg}{d\log\mu} = \mu \frac{dg}{d\mu} \equiv \beta_g = \beta_g^{(1)} + \beta_g^{(2)} + \cdots$$
 ("Beta-function")

Introduction	The Renormalization Group	PyR@TE 3	An asymptotically safe $SO(10)$ model
	000000		
Evomploy	Punning countings in th	o Standard Ma	dal
п ханнове	Βυσαπό εουοίπος τα τ	ie Sianoaro ivio	oel

- Standard Model gauge group: $SU(3) \times SU(2) \times U(1)$
- Standard Model Lagrangian density:

$$\mathcal{L}_{\mathrm{SM}} \supset \mathcal{L}_{\mathrm{kinetic}} - y_t \bar{Q}_L \widetilde{\phi} t_R - \left[\mu \phi^{\dagger} \phi + \lambda \left(\phi^{\dagger} \phi \right)^2 \right]$$

• β -functions for (some) Standard Model couplings at 1-loop in the \overline{MS} scheme:

$$\begin{split} 16\pi^2\beta(g_1) &= \frac{41}{6}g_1^3 , \quad 16\pi^2\beta^{(1)}(g_2) = -\frac{19}{6}g_2^3 , \quad 16\pi^2\beta^{(1)}(g_3) = -7g_3^3 \\ &16\pi^2\beta(y_t) = y_t \left(\frac{9}{2}y_t^2 - \frac{17}{12}g_1^2 - \frac{9}{4}g_2^2 - 8g_3^2\right) \\ 16\pi^2\beta(\lambda) &= 24\lambda^2 + 12\lambda y_t^2 - 6y_t^4 - (3g_1^2 + 9g_2^2)\lambda + \frac{3}{8}g_1^4 + \frac{3}{4}g_1^2g_2^2 + \frac{9}{8}g_2^4 \\ &16\pi^2\beta(\mu) = \left(12\lambda + 6y_t^2 - \frac{3}{2}g_1^2 - \frac{9}{2}g_2^2\right)\mu \end{split}$$

4/20

Introduction 00	The Renorm: ○○○○●○	alization Group	PyR@TE 3 000000	An a	asymptotically safe $SO(10)$ model
RGEs for g	eneral (no	n-SUSY) gau	ge theories: a	a brief hi	istory
Two-loop re	esults (80's):	M.E. Machacek,M.E. Machacek,M.E. Machacek,	M.T. Vaughn, Nucl. F M.T. Vaughn, Nucl. F M.T. Vaughn, Nucl. F	^o hys. B222, ^o hys. B236, ^o hys. B249,	83 (1983) 221 (1984) 709 (1985)
Some corre Mx. L	ections + exten uo, Hw. Wang a ing:	sion to dimension and Y. Xiao, Phys. Re	ul couplings: w. D67 (2003)	}	Implemented in SARAH
M. Luo	, Y. Xiao, Phys. L Fonseca, M. Malin	ett. B 555, 279 (200 nsky, F. Staub, Phys.	3) Lett. B 726, 882 (20 ⁻	13)	and PyR@TE 2
Some corre	ections + corre	ct treatment for off	-diagonal W.F. ren	ormalizatic	on:

I. Schienbein, F. Staub, T. Steudtner, K. Svirina, Nucl. Phys. B939 (2019)

3-loop gauge coupling RGEs for theories based on a simple gauge group:

A. Pickering, J. Gracey, D. Jones, Phys. Lett. B 510 (2001)

00	000000	000000	000000000
Introduction	The Renormalization Group	PyR@TE 3	An asymptotically safe $SO(10)$ model

RGEs for general (non-SUSY) gauge theories: recent developments

[C. Poole, A. E. Thomsen, arXiv:1906.04625]

- 3-loop general gauge coupling RGEs
- Partial results at order 4-3-2 (+ full 4-loop gauge coupling RGEs in the SM)
- Fixed the
 ₇₅ ambiguity at order 4-3-2

[LS, arXiv:2006.12307]

2-loop RGEs for dimensionful couplings in the above new formalism

[T. Steudtner, arXiv:2007.06591]

- 3-loop RGEs in purely scalar fields theories
- Partial 4-loop results

[T. Steudtner, arXiv:2101.05823]

3-loop RGEs in scalar-Yukawa theories (partial results)

PyR@TE 3

Introduction	The Renormalization Group	PyR@TE 3	An asymptotically safe $SO(10)$ model
		•••••	

PyR@TE 3

Computing RGEs for general gauge theories

[LS & I. Schienbein, arXiv:2007.12700] [LS, arXiv:2006.12307]

Introduction	The Renormalization Group	PyR@TE 3 0●0000	An asymptotically safe $SO(10)$ model
PyR@TE 3	: What's new		

Compared to the previous version, the code was essentially rewritten (PyR@TE 2 was no longer maintained since 2017)

- **Python 2** \rightarrow Python 3
- Sympy 0.7 → Sympy 1.6
- Implementation of the above formalism
 - \rightarrow Gauge coupling RGEs up to 3-loop
- New model file syntax
- Some additional new features
- Performance drastically improved [$\mathcal{O}(100)$ to $\mathcal{O}(10\,000)$ times faster]

Introduction	The Renormalization Group	PyR@TE 3	An asymptotically safe $SO(10)$ model
		000000	
Deriving th	ie RGEs: General form	alism	

 \blacksquare Gauge group $\mathcal{G} = \prod \mathcal{G}_u$

• Weyl fermions
$$\psi_i \longrightarrow \Psi_i \equiv \begin{pmatrix} \psi \\ \psi^{\dagger} \end{pmatrix}_i$$

Real scalars ϕ_a

$$\begin{split} \mathcal{L} &= -\frac{1}{4} \left(G^{-2} \right)_{AB} F^A_{\mu\nu} F^{B\,\mu\nu} + \frac{1}{2} (D_\mu \phi)_a (D^{\,\mu} \phi)_a + \frac{i}{2} \Psi^{\mathrm{T}} \begin{pmatrix} 0 & \sigma^\mu \\ \bar{\sigma}^{\,\mu} & 0 \end{pmatrix} D_\mu \Psi \\ &- \frac{1}{2} y_{aij} \Psi_i \Psi_j \phi_a - \frac{1}{2} m_{ij} \Psi_i \Psi_j \\ &- \frac{1}{2} \mu_{ab} \phi_a \phi_b - \frac{1}{3!} t_{abc} \phi_a \phi_b \phi_c - \frac{1}{4!} \lambda_{abcd} \phi_a \phi_b \phi_c \phi_d \,. \end{split}$$

$$D_{\mu}\Psi_{i} = \partial_{\mu}\Psi_{i} - i\sum_{A}V_{\mu}^{A}\left(T_{\Psi}^{A}\right)_{ij}\Psi_{j}$$
$$D_{\mu}\phi_{a} = \partial_{\mu}\phi_{a} - i\sum_{A}V_{\mu}^{A}\left(T_{\phi}^{A}\right)_{ab}\phi_{b}$$

Introduction	The Renormalization Group	PyR@TE 3 000●00	An asymptotically safe $SO(10)$ model

Deriving the RGEs: General formalism

Perturbative expansion:

$$\begin{split} \text{Gauge:} \quad \beta_{AB} &\equiv \frac{dG_{AB}^2}{dt} = \frac{1}{2} \sum_{\text{perm}} \sum_{\ell} \frac{1}{(4\pi)^{2\ell}} G_{AC}^2 \beta_{CD}^{(\ell)} G_{DB}^2 \,, \\ \text{Yukawa:} \quad \beta_{aij} &\equiv \frac{dy_{aij}}{dt} = \frac{1}{2} \sum_{\text{perm}} \sum_{\ell} \frac{1}{(4\pi)^{2\ell}} \beta_{aij}^{(\ell)} \,, \\ \text{Quartic:} \quad \beta_{abcd} &\equiv \frac{d\lambda_{abcd}}{dt} = \frac{1}{4!} \sum_{\text{perm}} \sum_{\ell} \frac{1}{(4\pi)^{2\ell}} \beta_{abcd}^{(\ell)} \end{split}$$

At fixed loop order, factorization of scheme dependence / model dependence:

$$\begin{split} \beta_{AB}^{(\ell)} &= \sum_{n} \mathfrak{g}_{n}^{(\ell)} A \checkmark (\ell, n) \leadsto B , \\ \beta_{atj}^{(\ell)} &= \sum_{n} \mathfrak{y}_{n}^{(\ell)} \underbrace{\overset{a}{\underset{i \leftarrow (\ell, n) \leftarrow j}{(\ell, n)}}_{i}, \quad \text{and} \quad \beta_{abcd}^{(\ell)} &= \sum_{n} \mathfrak{q}_{n}^{(\ell)} \underbrace{\overset{a}{\underset{b \leftarrow (\ell, n) \leftarrow j}{(\ell, n)}}_{c} d \\ \end{split}$$

$$\begin{split} \beta_{abcd}^{(1)} &= \mathfrak{q}_1^{(1)} \left(T_{\phi}^A T_{\phi}^C \right)_{ab} G_{AB}^2 G_{CD}^2 \left(T_{\phi}^B T_{\phi}^D \right)_{cd} & + \mathfrak{q}_2^{(1)} \left[C_2(S) \right]_{ae} \lambda_{ebcd} & + \mathfrak{q}_3^{(1)} \lambda_{abef} \lambda_{efcd} \\ &+ \mathfrak{q}_4^{(1)} \left[Y_2(S) \right]_{ae} \lambda_{ebcd} & + \mathfrak{q}_5^{(1)} \left[\operatorname{Tr} \left[y_a \tilde{y}_b y_c \tilde{y}_d \right] \right] \end{split}$$

Output				
■ LATEX				
Mathematica (expressions + RGE solver)				
Python (expressions + RGE solver)				

00	000000	000000	000000000
Introduction	The Renormalization Group	PyR@TE 3	An asymptotically safe $SO(10)$ model

Performance improvement compared to PyR@TE 2

Model	Loop order	PyR@TE 2	PyR@TE 3
	1	114	1.5
SM B-L	2	8823	11
	2 + 3 (gauge)	/	23
	1	385	1.0
SM + complex triplet	2	59936	3.2
	2 + 3 (gauge)	/	5.7
	1	79	0.9
SM + scalar singlet	2	5765	4.3
	2 + 3 (gauge)	/	5.6
	1	153	1.2
SM + complex doublet	2	39666	6.2
	2 + 3 (gauge)	/	9.4
SM - Majarana triplat	1	262	1.3
Voctorliko doublot	2	15653	10.7
	2 + 3 (gauge)	/	13.2

Execution time (in seconds)

Introduction	The Renormalization Group	PyR@TE 3	An asymptotically safe $SO(10)$ model
			•00000000

An asymptotically safe SO(10) model

[A. Held, J. Kwapisz, LS – Work in progress]

Introduction	The Renormalization Group	PyR@TE 3	An asymptotically safe $SO(10)$ model
			000000000
Asymptotic	c safety		

- Originally a theory of quantum gravity (non-perturbative renormalizability)
- By extension, a theory of interacting gravity+matter
- General idea: All the couplings of the theory converge to a fixed point at (arbitrary) high energies
 - Quantum scale invariance
 - No Landau poles ⇒ UV completion
- In the SM, asymptotic safety gives:
 - A Higgs mass of ≈ 126 GeV [M. Shaposhnikov, C. Wetterich, arXiv:0912.0208]
 - A top quark mass of ≈ 171 GeV [A. Eichhorn, A. Held, arXiv:1707.01107]
 - A possible explanation to the fermion mass hierarchy [A. Eichhorn, A. Held *et al.*, arXiv:2003.08401]

Introduction	The Renormalization Group	PyR@TE 3	An asymptotically safe $SO(10)$ model
			00000000
Asymptotic	safety – Gravitational	contributions to	the β -functions

The impact of gravity on the RG flow of the (marginal) matter couplings is given by:

$$\begin{array}{l} \beta\left(g_{i}\right) \longrightarrow \beta\left(g_{i}\right) = -f_{g}g_{i} + \beta\left(g_{i}\right) \\ [\text{Below } M_{P}] \qquad \beta\left(y_{i}\right) \longrightarrow \beta\left(y_{i}\right) = -f_{y}y_{i} + \beta\left(y_{i}\right) \\ \beta\left(\lambda_{i}\right) \longrightarrow \beta\left(\lambda_{i}\right) = f_{\lambda}\lambda_{i} + \beta\left(\lambda_{i}\right) \end{array}$$

$$\left[\begin{array}{c} \text{Above } M_{P} \end{array} \right]$$

All studies to date indicate that $f_g, f_y, f_\lambda > 0$

Example in the SM (at 1-loop):

$$\beta_{g_1} = \frac{41}{6} \frac{g_1^3}{16\pi^2} \quad \longrightarrow \quad \beta_{g_1} = -\frac{f_g g_1}{6} + \frac{41}{6} \frac{g_1^3}{16\pi^2}$$

Fixed points:

$$eta_{g_1}(g_1^*) = 0 \quad \Rightarrow \quad g_1^* = 0 \quad \text{or} \quad g_1^* = 4\pi \sqrt{\frac{6f_g}{41}}$$

Introduction	The Renormali		PyR@TE 3	An asymptotically safe $SO(10)$ model
	 . –	~		 ~

Asymptotic safety – Example: Gauge couplings in the SM

$$\beta_{g_1} = -f_g g_1 + \frac{41}{6} \frac{g_1^3}{16\pi^2} \Rightarrow g_1^* = 4\pi \sqrt{\frac{6f_g}{41}}$$

$$\beta_{g_2} = -f_g g_2 - \frac{19}{6} \frac{g_2^3}{16\pi^2} \Rightarrow g_2^* = 0$$

$$\beta_{g_3} = -f_g g_3 - 7 \frac{g_3^3}{16\pi^2} \Rightarrow g_3^* = 0$$
Asymptotic freedom
$$\begin{pmatrix} -g_1 \\ -g_2 \\ -g_3 \\ -g_3 \\ -g_3 \\ -g_3 \\ -g_3 \\ -g_4 \\ -g_4 \\ -g_5 \\ -g_6 \\$$

Figure: Asymptotically safe gauge couplings in the SM. $f_g \approx .01$ matches the IR value for g_1

Introduction	The Renormalization Group	PyR@TE 3 000000	An asymptotically safe SO(10) model
Grand Unified	Theories		

- Very appealing UV-completions of the Standard Model
- First GUTs were built in the context of SUSY
- Basic idea: The three known interactions are unified at high energies

Figure: Running gauge couplings in the SM (left) and the MSSM (right) [D. Croon *et al.*, arXiv:1903.04977]

Introduction	The Renormalization Group	PyR@TE 3 000000	An asymptotically safe SO(10) model
Grand Unifi	ed Theories – $SO(10)$		

- In the language of gauge theories, the SM gauge group $SU(3) \times SU(2) \times U(1)$ is the low energy residual symmetry of a broken, larger simple gauge group
- Most promising candidates: SU(5), SO(10), E_6
- Here we focus on SO(10):
 - All fermions (+ right-handed neutrino) are gathered in a single 16-dimensional multiplet
 - Anomaly-free
 - Can generate the observed fermion mass patterns
 - Provides a mechanism to generate neutrino masses
 - "Unification" of Left and Right chiralities

■ Many viable SO(10) models can be constructed depending on the scalar sector

Scalars $\in \{10, 16, 45, 54, 120, 126, 144, 210, \dots\}$

*Couples to the fermions

Two main constraints:

- Achieve symmetry breaking towards $SU(3) \times SU(2) \times U(1)$ (see next slide)
- Reproduce the SM fermion mass & mixing matrices (= at least 2 red scalars)

- The scalar content determines in which directions SO(10) can break
- The value of the couplings in the scalar potential determines in which direction SO(10) breaks
- The breaking chain influences (generates) the phenomenology of the model

 $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$

Figure: Breaking chains of SO(10) down to the Standard Model

[D. Croon et al., arXiv:1903.04977]

Grand Unif	ied Theories - How to	make prediction	ne 2
00	000000	000000	0000000000
Introduction	The Renormalization Group	PyR@TE 3	An asymptotically safe SO(10) model

- In the coarsest approximation, the gauge and Yukawa sectors can be studied independently of the precise form of the scalar potential.
- In any other case, the scalar potential must be studied in order to make reliable predictions.
- However, with scalars as big as 120 or 126 the scalar potential gets really involved. In particular, there are a lot of free parameters for very few input...

Grand Unit	fied Theories - How to	make predictio	ne ?
00	000000	000000	0000000000
Introduction	The Renormalization Group	PyR@TE 3	An asymptotically safe $SO(10)$ model

- In the coarsest approximation, the gauge and Yukawa sectors can be studied independently of the precise form of the scalar potential.
 - In any other case, the scalar potential must be studied in order to make reliable predictions.
 - However, with scalars as big as 120 or 126 the scalar potential gets really involved. In particular, there are a lot of free parameters for very few input...

... Asymptotic safety comes into play:

- Requiring the existence of a fixed point at high energies (above M_p) can fix the value of all the quartic couplings
- The model chosen for this analysis contains:

 $\label{eq:Fermions: 16} {\sf Fermions: 16}, {\sf Scalars: 10 \oplus 45 \oplus 126}$

- It is sometimes considered in the literature as the minimal non-SUSY SO(10) model
- We're interested in whether asymptotic safety can provide the following information:
 - The direction of the symmetry breaking (*i.e.* the breaking pattern)
 - If possible, the scale of symmetry breaking

Introduction	The Renormalization Group	PyR@TE 3	An asymptotically safe SO(10) model				
			000000000				
An asympt	An asymptotically safe $SO(10)$ model						

Current status of the project:

- The β-functions for this model were computed using a modified version of PyR@TE 3 (that will be made public in the future)
- A code was developped to determine the breaking chain once the numerical values for the couplings are known
- The fixed point analysis (in the 1-fermion generation approximation) revealed very interesting features:

Introduction	The Renormalization Group	PyR@TE 3 000000	An asymptotically safe SO(10) model			
An asymptotically safe $SO(10)$ model						

Current status of the project:

- The β-functions for this model were computed using a modified version of PyR@TE 3 (that will be made public in the future)
- A code was developped to determine the breaking chain once the numerical values for the couplings are known
- The fixed point analysis (in the 1-fermion generation approximation) revealed very interesting features:
 - The couplings involving scalars which do not couple do fermions are asymptotically free (operators 45⁴, 45²10² and 45²126²)
 - In particular, "portal" couplings between 45 and the other scalars are ~ 0, and the 45 effectively decouples from the rest of the scalar sector. This allows for:
 - A clear hierarchy between the breaking scales
 - An independent study of its scalar potential and of the first breaking step
 - The first step of symmetry breaking is entirely driven by the 45 (and is of Coleman-Weinberg type, *i.e.* driven by the quantum corrections to the scalar potential)
 - This is the expected behavior to break down to the SM !

Introduction	The Renormalization Group	PyR@TE 3	An asymptotically safe $SO(10)$ model
			00000000
Outlook			

- An asymptotically safe SO(10) model:
 - First exciting results
 - A next step is to further study the implications of asymptotic safety on the subsequent breaking steps
 - In the future, study the phenomenological implications (gauge coupling unification, scalar and fermion spectrum, proton decay...)
- PyR@TE 3:
 - New features currently in development
 - Higher order results for the β-functions expected to come soon. They will be implemented as soon as possible.
- Another ongoing project: the Multiple Point Principle in the Two Higgs Doublet model
 - This is another kind of high-scale principle, providing boundary conditions near the Planck scale
 - $\blacksquare\,$ In the SM, it predicts (back in 1995) a Higgs boson mass of $\approx 135\,{\rm GeV}$
 - We're studying the implications of this principle in the THDM
 - [M. Maniatis, LS, I. Schienbein, arXiv:2001.10541]
 - [B. Herrmann, M. Maniatis, LS, I. Schienbein Work in progress]

Introduction	The Renormalization Group	PyR@TE 3	An asymptotically safe $SO(10)$ model

Thank you for your attention ! Any questions ?