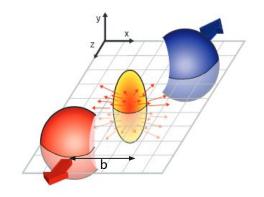
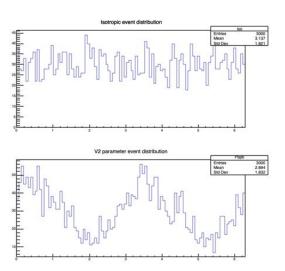

Correlation and Particles identification

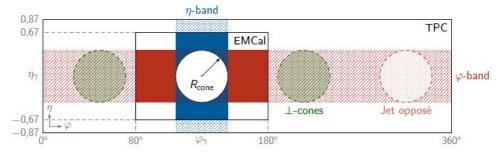
- Measure the correlation between two particles
 - Direct photons (near side)
 - Hadrons (away side)
- Direct photons are isolated
- Want to eliminate background particles
- Measure the number and energy of particles in a cone around the trigger event and compare it to a threshold

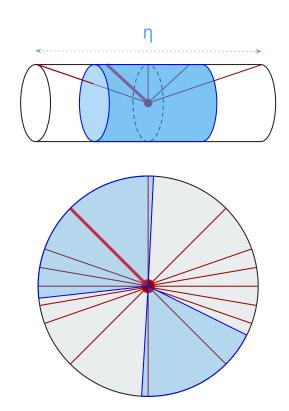



non-isolate

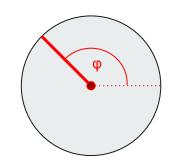
Underlying event

- Collisions generates underlying event
 - isotropic distribution (p-p,p-N, central N-N)
 - sinusoidal distribution (N-N with $b \neq 0$)
- Adds background in the cone, making the identification of the trigger particles harder
- Measure the background of the UE to subtract it from our data


$$E\frac{d^3N}{d^3p} = \frac{d^2N}{2\pi p_{\mathrm{T}}dp_{\mathrm{T}}dy} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos[n(\Phi - \Psi_R)]\right)$$

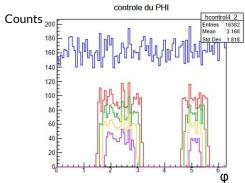

Estimation method of the UE

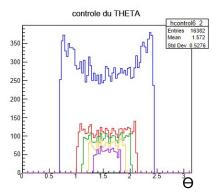
	φ-band	η-band	⊥-cones
Acceptance			
Sensitivity to the hard process			
Neutral component			
V2 parameter			



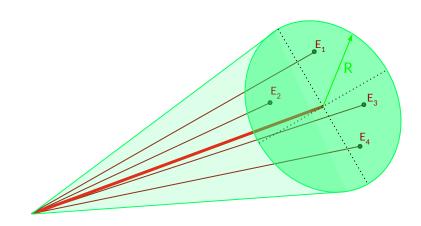
Simulation of the UE

- Generates a given number of events
- Each event has a trigger particle which have a random η and ϕ coordinates
- Produce a random number of tracks along a Gaussian with a given mean and standard deviation.
- Distribute them in a sinusoidal distribution in the azimuthal plane



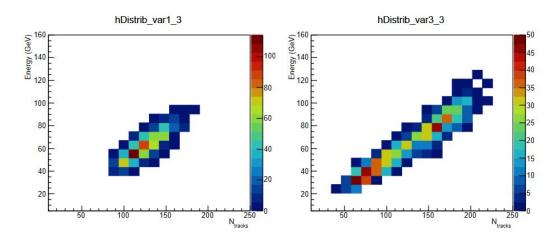

Acceptance of the detectors

- Takes into account the acceptance of EMCal and DCal cou
- Rejects every trigger particle that isn't inside the calorimeters acceptances

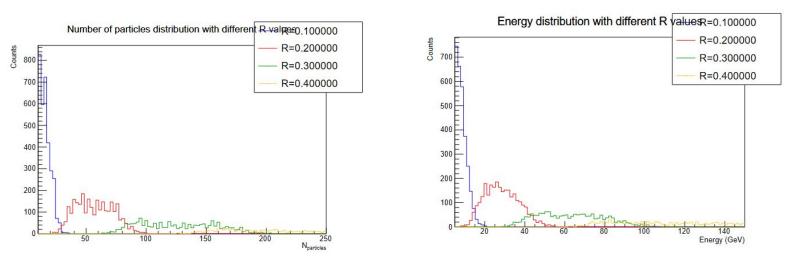


- Distribution of the event without acceptance
- Distribution of the event in EMCal or DCal acceptance with R = 0.1
- Distribution of the event with EMCal and DCal acceptance with R = 0.4

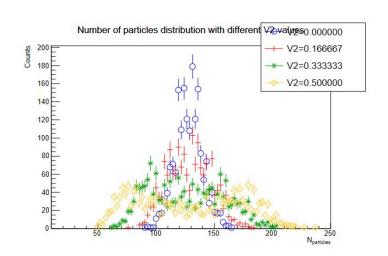
Measure of the number of tracks and energy in the cone

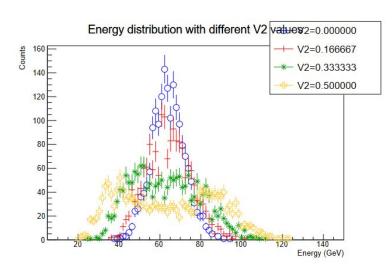

- Count the number of tracks inside a cone of radius R around the trigger particle
- Give each of these tracks a single energy and add them
- Return the number of tracks as well as the total energy inside the cone

$$N_{\text{track}} = 4$$
; $E_{\text{cone}} = E_1 + E_2 + E_3 + E_4$


Results

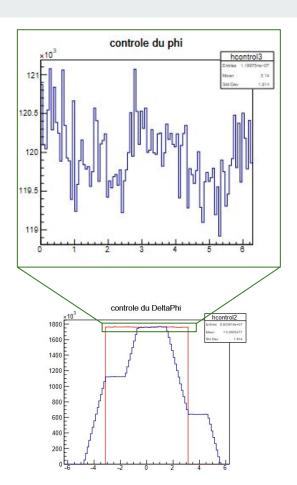
Number of tracks and energy correlation


<u>Observation</u>: There seem to be a strong correlation between the number of tracks in the cone and the energy inside said cone


R as a parameter

<u>Observation</u>: Widening the radius of the cone obviously increase the average number of tracks and the energy, but also flattens the distribution

V2 as a parameter



<u>Observation</u>: Increasing the V2 parameter changes the overall shape of the distribution, going from a Gaussian to two merged gaussian

Problems

- If we take the φ of all tracks from all events (or from the event with a same V2 parameter), we're expecting to see a flat line, since the multiple phase should cancel each other; yet we still find a somewhat sinusoidal distribution at the end of the program, and we still can't explain why

Perspectives

- Add the distinction between charged particles and neutral particles
- Measure the underlying event with the methods presented in slide 3
- Generate the V2 parameter as a function of the b parameter.

Sources

Etude du plasma de quarks et de gluons au LHC, *Julien Faivre*, 2016

Mesure des corrélations photon-hadron auprès de l'expérience ALICE au LHC pour l'étude du plasma de quarks et de gluons, Astrid Vauthier, 2017

Mesure de la production de photons isolés dans les collisions proton-proton et proton-plomb au LHC avec l'expérience ALICE, Erwann Masson, 2019