Studies for the Phase-2 ATLAS ITk pixel upgrade

Shohei Shirabe

Brief self-introduction

• Kyushu University

- Summer 2013: MEG Experiment @ PSI
- 2013-2014: muon g-2/EDM Experiment @ J-PARC
- 2015 : ATLAS @ CERN
 - SCT Operation
 - Displaced heavy neutral lepton analysis
- Tokyo Institute of Technology, University of Geneva
 - 2019 : ATLAS @ CERN
 - ITk Upgrade
- LPSC
 - 2022 2023 : ITk Upgrade

LHC and ATLAS

- 2008 2025
- <µ>~30
- 1 x 10³⁴ cm⁻²s⁻¹
- 400 fb⁻¹ (190 fb⁻¹ so far)

LHC and ATLAS

- 2008 2025
- <µ>~30
- 1 x 10³⁴ cm⁻²s⁻¹
- 400 fb⁻¹ (190 fb⁻¹ so far)

High Luminosity LHC

HL-LHC

- 2008 2025
- <µ>~30
- 1 x 10³⁴ cm⁻²s⁻¹
- 400 fb⁻¹ (190 fb⁻¹ so far)
- 2028 ~
- <µ>~200
- 7.5 x 10³⁴ cm⁻²s⁻¹
- 4000 fb⁻¹

LHC / HL-LHC Plan

Requirement for the pixel detector and its readout becomes demanding

Radiation tolerance

- Current ID Pixel designed for ~ 400 fb⁻¹
- Bandwidth saturation
 - Current ID designed to accommodate $<\mu>$ ~ 50 at 2 x 10³⁴ cm⁻² s⁻¹

High Luminosity LHC

HL-LHC

by an all silicon Inner Tracker

ATLAS Inner Tracker Upgrade

- New Inner detector have to cope with the HL-LHC environment
 - Better radiation tolerance
 - Fluence of 2 x $10^{16} n_{eq}/cm^2$, 4000 fb⁻¹
 - Faster readout
 - 5 Gbit/s per data link
 - Finer granularity
 - keep ~ 1% occupancy

- Covered a Covered a Readout Readout a [n] Pixel
 - L1 Tr

	Current ID	ITk
area (Pix) [m ²]	1.9	13
area (Strip) [m²]	60	160
channels (Pix)	~9.2 x 10 ⁶	5 x 10 ⁹
channels (Strip)	~ 6 x 10 ⁶	~ 50 x 10 ⁶
coverage	2.5	4.0
size [µm²]	50 x 400, 50 x 250	50 x 50, 25 x 100
rigger [kHz]	100	1000

ITk Pixel Detector

- Key Concepts
 - Inner 2 layers are replaceable
 - Inclined modules
 - Minimise material and maximise acceptance
 - Larger covered area: 13 m², $|\eta| < 4$
 - Consists of ~ 10000 modules
 - Low material budget
 - 3D and planar sensors
 - Serial powering
 - Common front-end chip for all layers

r [mm]

Radiation length

ITk Pixel Sensor

- Main change in sensor technology is the increase in the required level of tolerance to radiation
- 3D sensors: radiation hardness, low power dissipation
 - At the innermost layer (L0)
 - in the triplet modules
- Planner sensors: high fabrication yield and lower costs
 - In all other layers (L1-L4)
 - In the quad modules

Luminosity	Layer	Location	R	z	Fluence	
			(cm)	(cm)	$(10^{14} n_{eq}/cm^2)$	(
$2000 \ {\rm fb}^{-1}$	0	flat barrel	3.9	0.0	131	
			4.0	24.3	-	
		inclined barrel	3.7	25.9	123	
			3.7	110.0	-	
		end-cap	5.1	123.8	68	
$2000 \ {\rm fb}^{-1}$	1	flat barrel	9.9	24.3	27	
		inclined barrel	8.1	110.0	35	
		end-cap	7.9	299.2	38	
$4000~{ m fb}^{-1}$	2-4	flat barrel	16.0	44.6	28	
		inclined barrel	15.6	110.0	30	
		end-cap	15.3	299.2	38	

Planar Sensor

IBL

- Thickness of 200 µm \bullet
- $50 \times 250 \ \mu m^2$ pixel cells lacksquare
- n-in-n \bullet

ITk

- $50 \times 50 \ \mu m^2$ pixel cells \bullet
- n-in-p \bullet

n-in-p technology

- Well proven and understood technique
- Single sided process (simple production, low cost)

Thickness of 100, 150 µm

Required Performance

- Hit efficiency > 97% (after irradiation)
- Bias voltage at end of life up to: ${\color{black}\bullet}$
 - 600 V for 150 µm sensor lacksquare
 - 400 V for 100 µm sensor lacksquare

10

3D Sensor

- 3D sensor used in the innermost layer
 - 150 µm active thickness + 100 µm support wafer
 - 50 x 50 µm² (endcap region)
 - 25 x 100 µm² (barrel region)
 - More radiation tolerant

Required Performance

- Hit efficiency > 97% (after irradiation)
- Low operational bias voltage: 80-140 V
- Low power dissipation

11

ITk Front-End Chip

RD53A Prototype

- 3 different type FEs are on a single chip
- 400 x 192 pixels
- $50 \times 50 \,\mu m^2$

Example of square pixel on sensor above

Bump bond location

RD53 Collaboration

- ATLAS and CMS
- 65 nm TSMC technology (130 nm for IBL)
- 50 µm minimum pitch
- Shunt LDO implementation for compatibility with Serial Powering

ITk Pixel Module

Flexible PCB

ASIC

Silicon Sensor

Hybridization

- Fine-pitch bump-bonding
- Bump deposition, UBM, flip chip

Wire-bond

Quad module $(40 \times 40 \text{ mm}^2)$

Flexible cable

- $50 \times 50 \ \mu m^2$ pixel lacksquare
- 1.28 Gb/s per lane

13

Module QC

- All modules have to pass "module QC"
 - Many institutes (> 20) are joining in the Production

Difficulty for QC tests

- Perform comparable tests with variety of \bullet testing setup
- Properly handle testing data to compare between different stage/sites

Database

Central DB: ITk Production DB

• Storage for all data of ITk

Local DB:

• Temporary storage of each site

Data Flow

Local Data Base

NoSQL Database

- Favoured due to its flexibility compared to SQL DB
- Data is stored as a "json" format ("document")

SQL

- Relational
- Structured data
- Vertically scalable
- Table based

NoSQL

- Non-relational
- Unstructured data
- Horizontally scalable
- Document, key-value, graph, or widecolumn

Application **Collection Retrieved document** id: 2001, id: 2001, Module_ID: XXX, Module_ID: XXX, Serial: Hoge, Serial: Hoge, Test_ID: ZZZ, Location: Huga, Temp_1: [,,,,], Humi_1: [,,,,] document MongoDB API

Structure of LocalDB

Local DB Viewer

Custom Web application based on Flask

	ican List						
op i age > J							
can Li	st						
put keyword	ls 💿 Pa	artial match 🔿 Pe	erfect match	Search			
			1 2 3 4 5	5 6 7 8 9 10 11 12 13 14 15	*		
		Test Data					
Module Name	Chip Name	Test Type	User	Site	Date	Link	Tag J: Creat
KEKQ07	chip1 chip2 chip3 chip4	std_analogscan	atlasj	atlaspc9.kek.jp	2021/08/19 18:07:25	result page	🗣 hoge
KEKQ07	chip1 chip2 chip3 chip4	std_digitalscan	atlasj	atlaspc9.kek.jp	2021/08/19 18:06:54	result page	
KEKQ07	chip1 chip2 chip3 chip4	std_analogscan	atlasj	atlaspc9.kek.jp	2021/08/19 13:07:26	result page	
KEKQ07	chip1 chip2 chip3 chip4	std_digitalscan	atlasj	atlaspc9.kek.jp	2021/08/19 13:07:04	result page	
KEKQ07	chip1 chip2 chip3 chip4	std_analogscan	atlasj	atlaspc9.kek.jp	2021/08/19 12:53:58	result page	
KEKQ07	chip1 chip2 chip3 chip4	std_digitalscan	atlasj	atlaspc9.kek.jp	2021/08/19 12:53:35	result page	
KEKQ07	chip1 chip2 chip3	std_analogscan	atlasj	atlaspc9.kek.jp	2021/08/19 12:46:57	result page	

KEKQ07	chip2 chip3 chip4	std_analogscan	atlasj	atlaspc9.kek.jp	2021/08/19 18:07:25	result page
KEKQ07	chip1 chip2 chip3 chip4	std_digitalscan	atlasj	atlaspc9.kek.jp	2021/08/19 18:06:54	result page
KEKQ07	chip1 chip2 chip3 chip4	std_analogscan	atlasj	atlaspc9.kek.jp	2021/08/19 13:07:26	result page
KEKQ07	chip1 chip2 chip3 chip4	std_digitalscan	atlasj	atlaspc9.kek.jp	2021/08/19 13:07:04	result page
KEKQ07	chip1 chip2 chip3 chip4	std_analogscan	atlasj	atlaspc9.kek.jp	2021/08/19 12:53:58	result page
KEKQ07	chip1 chip2 chip3 chip4	std_digitalscan	atlasj	atlaspc9.kek.jp	2021/08/19 12:53:35	result page
KEKQ07	chip1 chip2 chip3 chip4	std_analogscan	atlasj	atlaspc9.kek.jp	2021/08/19 12:46:57	result page

Top Page > Component List > Scan List > Component > Scan Result

Component: 20UPGR10099999 C Component page of ITkPD

Current Stage: MODULEWIREBONDPROTECTION

Result: 133

🌣 Informatio	on			
ltem	Value			
Serial Number	20UPGR10099999			
Component Type	module			
FE type	RD53A			
Children	20UPGFC9999995 2	20UPGFC9999996	20UPGFC9999997	20UPGFC9999998

🌣 Result		
🗅 Scan		🗎 Outp
Кеу	Data	Data
runNumber	133	Туре
testType	std_analogscan	ctrlCfg
stage	MODULEWIREBONDING	dbCfg
component	20UPGR10099990 20UPGFC9999995 20UPGFC9999996 20UPGFC9999997	siteCfg userCfg
	20UPGFC9999998	boforoC
startTime	2021/08/05 00:48:14	Deforec
finishTime	2021/08/05 00:49:09	
user	kinoshita	
site	gemini	- (1 () (
targetCharge	-1	afterCig
targetTot	-1	
exec	-r configs/controller/emuCfg_rd53a.json -c db-data/connectivity.json -s configs/scans/rd53a/std_analogscan.json -W	
stopwatch	analysis: 548 config: 533 processing: 2 scan: 49035	Occupa
QC	False	
environment	False	L1Dist
plots	OccupancyMap L1Dist EnMask	
passed	True	
qcTest	False	EnMask
qaTest	False	
summary	False	

Output Data				
Data				
Туре	Format	Chip	Display	Download 📥
ctrlCfg	json			A
dbCfg	json			*
siteCfg	json			*
userCfg	json			±
scanCfg	json			
beforeCfg	json	20UPGFC9999995		*
		20UPGFC9999996		*
		20UPGFC9999997		*
		20UPGFC9999998		*
afterCfg	json	20UPGFC9999995		*
		20UPGFC9999996		*
		20UPGFC9999997		*
		20UPGFC9999998		*
OccupancyMap	json	20UPGFC9999995		*
		20UPGFC9999996		*
		20UPGFC9999997		*
		20UPGFC9999998		*
L1Dist	json	20UPGFC9999995		*
		20UPGFC9999996		*
		20UPGFC9999997		*
		20UPGFC9999998		*
EnMask	json	20UPGFC9999995		*
		20UPGFC9999996		*
		20UPGFC9999997		<u>*</u>
		20UPGFC9999998		A

Local DB Viewer

Dynamically generate plots by ploty

Environmental Data

() influxes the series database for environmental monitoring

Grafana: Open source analytics and interactive visualisation web application

QC Helper

Data uploader for non-electrical tests

🔴 🕘 🐘 🔀 QC Helper			🕅 Wirebonding information	
Choose your inspection	on	Input Wir	ebonding inform	ation
Serial Number : practice Test Stage : practice		Machine used : Operator Name :		
Test name	Upload status in localDB	Institution of Operator :		
• Mass Measurement	Practice	Bond wire batch :	ТВА	
 Wirebond pull tests 	Practice	Bonding jig :		Chassa fila
 Wirebonding Information 	Practice	Bond program :		deaC
 Parvlene Properties 	Practice	Humidity :		%RH
O Glue Information Module+Flex Attach	Practice			
O Thermal Cycling	Practice	comment :		
 Optical Inspection 	Practice	Back		<u>N</u> ext
 Metrology 	Practice	Current user : practice	pra	ctice mode
O Sensor IV at 30 degC	Practice		V main ny	_
 Sensor IV at 20 degC 	Practice			
O Sensor IV at -15 degC	Practice		Metrology	
O SLDO VI	Practice	Result file:		<u>C</u> hoose file
O RD53A pull-up resistor FE	Practice			
○ IrefTrim FE	Practice	Comment :		
 PCB-Bare Orientation isNormal 	Practice			
Back	Next	Back		Next
Current user : practice	practice mode 📈	Current user : practice		practice mode

We're also trying to automatize visual inspection...

	oage: 12/36
	Plating
heckbox.	Plating
	4
	Next
	1.

YARR - DAQ system

- PCIe based high-speed DAQ system
 - FPGA just aggregates data from FE ASICSs, everything sophisticated is done by its corresponding software

RD53A Testing Setup

RD53A Testing Setup

Cooling system for the quad module

Peltier Control and Temperature Monitoring

TEC-1089-SC-PT1000

PID Control

- Two temperature sensors as references
 - PT1000 for vacuum chuck
 - NTC for cold plate

SHT85

- High-accuracy RH&T sensor for demanding measurement & test applications
- Typical accuracy of ± 1.5 %RH and ± 0.1 °C
 Pin-type packaging for easy integration and replacement
- Fully calibrated, linearized, and temperature compensated digital output
- On-package membrane protected by exclusive license for several patents¹

Temperature Control and Monitoring

Overview of testing setup @ UniGe

Controlled by GUI

		D	CS Co	ntroller _ 🗆 🗙			D	CS Con	troller	-
Summary	Temperature	LV	HV		Summary	Temperature	LV	HV		
Temperatur	e and Dewpoint		F	Peltier Controler	ch1:	(off		\bigcirc on	l
				Statuc	1.0			v [1.0	
Module:	22.40) de	egC 📗	Status.	ch2:	(off (\bigcirc on	
		_		O Init O Ready Run O Error	1.0			v	1.0	
Vacuum Cl	hunk: -5.40	de	egC		ch3:	(off (\bigcirc on	
Cold Plate	11.32	2 de	eqC	Applied Voltage: 1.82 V	1.0			V	1.0	
					ch4:	(off (\bigcirc on	l
Inside Coo	ling Unit: 6.71	de	egC	Current: 1.22 A	1.0			v	1.0	
Relative H	umidity: 11.19	%			Set Volta	ge and Current				
Dewpoint:	-21.9	7 de	egC	Target Temperature: -10 degC	⊖ ch1	\bigcirc ch2	С	ch3	\bigcirc ch4	🔿 all
								v		
show	nfo ref	resh		Reset Apply					OFF	0

HMP4040

Monitored by Grafana (recorded in the influxDB)

Loaded Cell Module

Module Temperature

Temperature Sensors of the Module

- 2 NTCs on the PCB
- 4 NMOS temperature sensors in each ASIC
 - These sensors are available only when chip turns on

$$\Delta V = N_f \times \frac{kT}{q} \times \ln R$$

 $V_1 = M_{\text{right}}$ Biased at 1 x l_p

$$\Delta V = V_2 - V_1$$

 $V_2 = M_{right}$ Biased at 15 x Ip

How to calibrate temperature sensors in the ASIC?

Temperature Sensor Calibration

Leakage current of a silicon sensor depends on its temperature

$$\frac{I(T_2)}{I(T_1)} = \left(\frac{T_2}{T_1}\right)^2 e^{-\frac{E_g(T_2)}{2kT_2} + \frac{E_g(T_1)}{2kT_1}}, E_g(T) = E_g(0) - \frac{\alpha T^2}{T + \beta}$$

Able to calibrate each sensor with the accuracy of ± 1.3 C

Upstream Data Transmission

PPO Prototype

- First inclined PP0 prototype
 - based on design done for services PDR
 - Adapted from L4 to L3

LV round-trip resistance

Readout Test for PPO Prototype

• Testing with 2 quad modules

Readout Test for PPO Prototype

• Testing with 2 quad modules

2000

1000

1000

1500

2000

2500

3000

Threshold [e]

Get equivalent results as module stand alone test

Conclusion

- There are many activities toward Phase-II ATLAS ITk Upgrade
 - Preparing for the mass production of Pixel detector
 - Testing setup, procedure, database, and so on...
- Real production phase is approaching!!

- Thank you for your attention!!
- ご清聴有り難うございました。

