Systematic effects and magnetic field uniformity in n2EDM

neutron Electric Dipole Moment

Thomas Bouillaud

17/03/2022

What is the electric dipole moment?

Spin ¹/₂ particle in a magnetic field

- $H = -\mu \sigma \cdot B$
- With $\mathbf{B} = B_0 \mathbf{u}_z$, precession frequency given by $\hbar 2\pi f = 2\mu B_0$
- Neutron in $B_0 = 1 \,\mu \text{T} \rightarrow f \approx 30 \, s^{-1}$

What is the electric dipole moment?

Spin 1/2 particle in a magnetic field

- $H = -\mu \sigma \cdot B$
- With $B = B_0 u_z$, precession frequency given by $\hbar 2\pi f = 2\mu B_0$
- Neutron in $B_0 = 1 \,\mu \mathrm{T} \rightarrow f \approx 30 \, s^{-1}$

What about a spin $\frac{1}{2}$ particle in an electric field?

- $H = -d \sigma \cdot E$
- With $\mathbf{E} = \mathbf{E}_0 \mathbf{u}_{\mathbf{z}}$, precession frequency given by $\hbar 2\pi f = 2\mathbf{d} \mathbf{E}_0$

Neutron in E = 1 kV/cm → f < 4 year⁻¹ (according to the current nEDM limit)
 ↔ d_n almost zero

Why measure the neutron EDM?

Why measure the neutron EDM?

Violates $T \rightarrow$ violates CP by CPT

1. Definition and motivations

Formally: CP violating term (EM field and quark coupling)

$$\mathcal{L} = \frac{\mu}{2} \bar{f} \sigma_{\mu\nu} f F^{\mu\nu} - \frac{id}{2} \bar{f} \sigma_{\mu\nu} \gamma_5 f F^{\mu\nu} \qquad CP \qquad \mathcal{L} = \frac{\mu}{2} \bar{f} \sigma_{\mu\nu} f F^{\mu\nu} + \frac{id}{2} \bar{f} \sigma_{\mu\nu} \gamma_5 f F^{\mu\nu} + \frac{id}{2} \bar{f} \sigma_{\mu\nu$$

1. Definition and motivations

Formally: CP violating term (EM field and quark coupling)

$$\mathcal{L} = \frac{\mu}{2} \bar{f} \sigma_{\mu\nu} f F^{\mu\nu} - \frac{id}{2} \bar{f} \sigma_{\mu\nu} \gamma_5 f F^{\mu\nu} \qquad CP \qquad \mathcal{L} = \frac{\mu}{2} \bar{f} \sigma_{\mu\nu} f F^{\mu\nu} + \frac{id}{2} \bar{f} \sigma_{\mu\nu} \gamma_5 f F^{\mu\nu} + \frac{id}{2} \bar{f} \sigma_{\mu\nu$$

In the Standard Model:

- CKM phase contribution to quark EDMs through at least 3 loops diagrams \rightarrow very negligible ($d_n \sim 10^{-32} e. \text{ cm}$).
- QCD contribution $\frac{\alpha}{8\pi} \bar{\theta} \ G^{\mu\nu} \widetilde{G_{\mu\nu}}$ should generate huge EDMs ($d_n \sim 10^{-16} e. \text{ cm}$). : current limit $d_n < 10^{-26} e. \text{ cm} \Rightarrow \bar{\theta} < 10^{-10}$ (strong CP problem).

Beyond the SM:

• (ex) modified Higgs-fermion Yukawa coupling $\mathcal{L} = -\frac{\gamma_f}{\sqrt{2}} \left(\kappa_f \bar{f} f h + i \tilde{\kappa}_f \bar{f} \gamma_5 f h \right)$ generates EDM at 2 loops.

B E

$$2\pi f = \frac{2\mu}{\hbar} B \pm \frac{2d}{\hbar} |E| \quad \Longrightarrow \quad f(\uparrow\uparrow) - f(\uparrow\downarrow) = -\frac{2}{\pi\hbar} d|E|$$

B E

$$2\pi f = \frac{2\mu}{\hbar} B \pm \frac{2d}{\hbar} |E| \qquad \Longrightarrow \qquad f(\uparrow\uparrow) - f(\uparrow\downarrow) = -\frac{2}{\pi\hbar} d |E|$$

$$\int f(\uparrow\uparrow) - f(\uparrow\downarrow) = -\frac{2}{\pi\hbar} d |E|$$

$$\int f(\uparrow\uparrow) - f(\uparrow\downarrow) = -\frac{2}{\pi\hbar} d |E|$$

$$\int f(\uparrow\uparrow\uparrow) - f(\uparrow\downarrow) = -\frac{2}{\pi\hbar} d |E|$$

$$\int f(\uparrow\uparrow\uparrow) - f(\uparrow\downarrow) = -\frac{2}{\pi\hbar} d |E|$$

$$\int f(\uparrow\uparrow\uparrow) - f(\uparrow\downarrow\downarrow) = -\frac{2}{\pi\hbar} d |E|$$

$$\int f(\uparrow\uparrow\uparrow\downarrow) = -\frac{2}{\pi\hbar} d |E|$$

$$\int f(\uparrow\downarrow\uparrow\downarrow) = -\frac{2}{\pi\hbar} d |E|$$

$$\int f(\uparrow\downarrow\downarrow) = -\frac{2}{\pi\hbar} d |E|$$

$$\int f(\downarrow\downarrow\downarrow) = -\frac{2}{\pi\hbar} d |E|$$

$$\int f(\downarrow\downarrow\downarrow) = -\frac{2}{\pi\hbar} d |E|$$

- Maximize the statistics
- Control the magnetic field

- \rightarrow Large cell volume, efficient UCN transport
- \rightarrow Hg co-magnetometry, magnetic shielding (MSR, AMS), field mapping
- \rightarrow Deal with systematics: false EDM, gravitational shift

- Maximize the statistics •
- **Control the magnetic field**

- \rightarrow Large cell volume, efficient UCN transport
- \rightarrow Hg co-magnetometry, magnetic shielding (MSR, AMS) (field mapping)...
- \rightarrow Deal with systematics: false EDM, gravitational shift, ...

2. Measurement

Counting spins with the Ramsey method

(b) UCNs are guided towards the spin-sensitive detectors.

2. Measurement

Counting spins with the Ramsey method

Up-down spin asymmetry $A \rightarrow$ precession frequency f

Hg co-magnetometry to compensate magnetic field fluctuations

Problem: Uncertainty on *f* dominated by magnetic field fluctuations!

Hg co-magnetometry to compensate magnetic field fluctuations

Overview of n2EDM

Polynomial field expansion

$$\boldsymbol{B}(\boldsymbol{r}) = \sum_{l=0}^{+\infty} \sum_{m=-l}^{l} \boldsymbol{G}_{lm} \boldsymbol{\Pi}_{lm}(\boldsymbol{r})$$

Maxwell's equations $\nabla \cdot B = 0 \text{ and } \nabla \times B = 0$ \downarrow $B(r) = \nabla \Sigma(r)$ with

$$\Delta\Sigma(r,\varphi,\theta)=0$$

Laplace equation in spherical coordinates

with

$$\Delta\Sigma(r,\varphi,\theta)=0$$

Laplace equation in spherical coordinates

Harmonic modes $\pmb{\Pi}_{lm}(\pmb{r})$
deduced from solutions
of Laplace equation

TABLE IV. The basis of harmonic polynomials sorted by degree in cylindrical coordinates.					
I	m	$\Pi_{ ho}$	Π_{ϕ}	Πz	
0	-1	$\sin\phi$	$\cos \phi$	0	
0	0	0	0	1	
0	1	$\cos \phi$	$-\sin\phi$	0	
1	$^{-2}$	$\rho \sin 2\phi$	$\rho \cos 2\phi$	0	
1	$^{-1}$	$z\sin\phi$	$z\cos\phi$	$\rho \sin \phi$	
1	0	$-\frac{1}{2}\rho$	0	z	
1	1	$z\cos\phi$	$-z\sin\phi$	$\rho \cos \phi$	
1	2	$\rho \cos 2\phi$	$-\rho \sin 2\phi$	0	
2	-3	$\rho^2 \sin 3\phi$	$\rho^2 \cos 3\phi$	0	
2	-2	$2\rho z \sin 2\phi$	$2\rho z \cos 2\phi$	$\rho^2 \sin 2\phi$	
2	-1	$\frac{1}{4}(4z^2-3\rho^2)\sin\phi$	$\frac{1}{4}(4z^2-\rho^2)\cos\phi$	$2\rho z \sin \phi$	
2	0	$-\rho z$	0	$-\frac{1}{2}\rho^{2}+z^{2}$	
2	1	$\frac{1}{4}(4z^2-3\rho^2)\cos\phi$	$\frac{1}{4}(\rho^2 - 4z^2)\sin\phi$	$2\rho z \cos \phi$	
2	2	$2\rho z \cos 2\phi$	$-2\rho z \sin 2\phi$	$\rho^2 \cos 2\phi$	
2	3	$\rho^2 \cos 3\phi$	$-\rho^2 \sin 3\phi$	0	

Maxwell's equations $\nabla \cdot B = 0$ and $\nabla \times B = 0$ \downarrow $B(r) = \nabla \Sigma(r)$

with

$$\Delta\Sigma(r,\varphi,\theta)=0$$

Laplace equation in spherical coordinates

So what do we measure? The generalized gradients G_{lm} :

- "Online" with mercury co-magnetometry and cesium magnetometers.
- "Offline" with the mapper.

Harmonic modes $\Pi_{lm}(r)$ deduced from solutions of Laplace equation

TABLE IV. The basis of harmonic polynomials sorted by degree in cylindrical coordinates.						
m	$\Pi_{ ho}$	Π_{ϕ}	Π _z			
-1	$\sin \phi$	$\cos\phi$	0			
0	0	0	1			
1	$\cos\phi$	$-\sin\phi$	0			
$^{-2}$	$\rho \sin 2\phi$	$\rho \cos 2\phi$	0			
-1	$z\sin\phi$	$z\cos\phi$	$\rho \sin \phi$			
0	$-\frac{1}{2}\rho$	0	7			
1	$z\cos\phi$	$-z\sin\phi$	$\rho \cos \phi$			
2	$\rho \cos 2\phi$	$-\rho \sin 2\phi$	0			
-3	$\rho^2 \sin 3\phi$	$\rho^2 \cos 3\phi$	0			
-2	$2\rho z \sin 2\phi$	$2\rho z \cos 2\phi$	$\rho^2 \sin 2\phi$			
=1	$\frac{1}{2}(4z^2-3\rho^2)\sin\phi$	$\frac{1}{2}(4z^2 - \rho^2)\cos\phi$	$2\rho z \sin \phi$			
0	-07	0	$-\frac{1}{2}a^2 + z^2$			
1	$\frac{1}{2}(4z^2 - 3z^2)\cos\phi$	$\frac{1}{2}(a^2-4z^2)\sin\phi$	$2\rho = 2$			
2	$\frac{1}{4}(42 - 5p)(603p)$	$\frac{1}{4}(\varphi - 4z)\sin\varphi$ $-2\alpha z\sin 2\phi$	$a^2 \cos 2\phi$			
3	$\rho^2 \cos 3\phi$	$-\rho^2 \sin 3\phi$	p cos 24			
			20			

> Produce a very uniform B0 field $(1\mu T)$ Produce specific gradients Hold the UCN polarisation Neutron spin manipulation B0 coil -Trim coils RF coils -Gradient coil(G10) -

An important systematic effect, the "false EDM"

Because the magnetic field is not perfectly uniform *and* because the mercury atoms and the neutrons do not move at the same velocity, they **do not see the same magnetic field.**

This induces extra terms in the frequency ratio that act like EDMs:

$$\mathcal{R} = \left| \frac{\gamma_n}{\gamma_{Hg}} \right| \mp \frac{2|E|}{\pi \hbar |\gamma_{Hg} B_0|} \left(d_n + d_n^{\text{false}} + d_{n \leftarrow Hg}^{\text{false}} + \cdots \right)$$

False neutron EDM induced by the false mercury EDM

An important systematic effect, the "false EDM"

Because the magnetic field is not perfectly uniform *and* because the mercury atoms and the neutrons do not move at the same velocity, they **do not see the same magnetic field**.

 $\mathcal{R} = \left| \frac{\gamma_n}{\gamma_{Hq}} \right| \mp \frac{2|E|}{\pi \hbar |\gamma_{Hq} B_0|} \left(d_n + d_n^{\text{false}} + d_{n \leftarrow Hg}^{\text{false}} + \cdots \right)$

This induces extra terms in the frequency ratio that act like EDMs:

4. Systematics

$$b(\tau) = \left[B_T(r(\tau)) + \frac{E}{c^2} \times \dot{r}(\tau) \right] \cdot \left[e_x + i e_y \right]$$
 horizontal field fluctuations non-uniform field + motional field

$$v_n \approx 3 m. s^{-1}$$

• Greater time constants for neutrons than for Hg means dilated non-uniform field

False neutron EDM induced by the false mercury EDM

• Motional field larger for fast Hg atoms than for slow neutrons

$$v_{Hg} \approx 150 \ m. s^{-1}$$

An expression for the false EDM

The **false** EDM is the difference in frequency **shifts** of **opposite electric field configurations**

$$d_{n \leftarrow Hg}^{\text{false}} = \frac{\hbar |\gamma_n|}{4|E|} \left(\delta \omega_{Hg}(-E) - \delta \omega_{Hg}(E) \right) \right)$$

An expression for the false EDM

The **false** EDM is the difference in frequency **shifts** of opposite electric field configurations

$$d_{n \leftarrow Hg}^{\text{false}} = \frac{\hbar |\gamma_n|}{4|E|} \left(\delta \omega_{Hg}(-E) - \delta \omega_{Hg}(E) \right) \right)$$

$$b(\tau) = \left[B_T(r(\tau)) + \frac{E}{c^2} \times \dot{r}(\tau) \right] \cdot \left[e_x + i e_y \right]$$

where the frequency shift is given by spin relaxation theory as a function of the fluctuating transverse magnetic field

$$\delta\omega_{Hg} = \frac{\gamma_{Hg}^2}{2} \int_0^\infty d\tau \, \mathrm{Im} \Big[e^{i\omega\tau} \langle b^*(0)b(\tau) \rangle \Big]$$

<u>Conclusion</u>: the **combination of a non-uniform field and moving particles** generates a systematic effect

$$d_{n\leftarrow Hg}^{\text{false}} = \frac{\hbar |\gamma_n \gamma_{Hg}|}{2c^2} \int_0^\infty d\tau \cos(\omega\tau) \frac{d}{d\tau} \langle x(\tau) B_x(0) + y(\tau) B_y(0) \rangle$$

How do we deal with the false EDM?

A) Estimate it $@ B_0 = 1 \mu T$

because $d_{n \leftarrow Hg}^{\text{false}}$ has an analytical expression valid for **low fields**:

$$d_{n\leftarrow Hg}^{\mathrm{false}} = -rac{\hbar |\gamma_n \gamma_{Hg}|}{2c^2} \langle xB_x + yB_y
angle$$

$$=\frac{\hbar|\gamma_{n}\gamma_{Hg}|}{8c^{2}}R^{2}\left(G_{10}-G_{30}\left(\frac{R^{2}}{2}-\frac{H^{2}}{4}\right)+\cdots\right)$$

...but need to know the generalized gradients accurately

How do we deal with the false EDM?

because $d_{n \leftarrow Hg}^{\text{false}}$ has an analytical expression valid for **low fields**:

$$d_{n \leftarrow Hg}^{\text{false}} = -\frac{\hbar |\gamma_n \gamma_{Hg}|}{2c^2} \langle xB_x + yB_y \rangle$$

$$= \frac{\hbar |\gamma_n \gamma_{Hg}|}{8c^2} R^2 \left(\frac{G_{10} - G_{30}}{2} \left(\frac{R^2}{2} - \frac{H^2}{4} \right) + \cdots \right)$$

...but need to know the generalized gradients accurately.

• @ $B_m \approx 10 \ \mu T$ "magic field"

 $@ B_0 = 1 \, \mu T$

because $d_{n \leftarrow Hg}^{\text{false}}(B_m) = 0$ for some specific field configuration

...but no analytical expression.

$d_{n\leftarrow Hg}^{\text{false}} = \frac{\hbar |\gamma_n \gamma_{Hg}|}{2c^2} \int_0^\infty d\tau \cos(\omega \tau) \frac{d}{d\tau} \langle x(\tau) B_x(0) + y(\tau) B_y(0) \rangle$

The magic field, take one

- 1) Calculate the correlation function with a Monte-Carlo simulation for a given magnetic configuration
- i. Simulate trajectories r(t) = (x(t), y(t), z(t)) of Hg atoms
- ii. Calculate polynomial pieces $\langle x(\tau)x^i(0)y^j(0)\rangle$ with the **ergodicity property**: average over all particles \Leftrightarrow time average of one particle over infinite time

$$\lim_{T\to\infty}\frac{1}{T}\int_0^\infty dt\,x(t)x(t+\tau)$$

$d_{n\leftarrow Hg}^{\text{false}} = \frac{\hbar |\gamma_n \gamma_{Hg}|}{2c^2} \int_0^\infty d\tau \cos(\omega\tau) \frac{d}{d\tau} \langle x(\tau) B_x(0) + y(\tau) B_y(0) \rangle$

The magic field, take one

- 1) Calculate the correlation function with a Monte-Carlo simulation for a given magnetic configuration
- i. Simulate trajectories r(t) = (x(t), y(t), z(t)) of Hg atoms
- ii. Calculate polynomial pieces $\langle x(\tau)x^i(0)y^j(0)\rangle$ with the **ergodicity property**: average over all particles \Leftrightarrow time average of one particle over infinite time

$d_{n\leftarrow Hg}^{\text{false}} = \frac{\hbar |\gamma_n \gamma_{Hg}|}{2c^2} \int_0^\infty d\tau \cos(\omega\tau) \frac{d}{d\tau} \langle x(\tau) B_x(0) + y(\tau) B_y(0) \rangle$

The magic field, take one

- 1) Calculate the correlation function with a Monte-Carlo simulation for a given magnetic configuration
- i. Simulate trajectories r(t) = (x(t), y(t), z(t)) of Hg atoms
- ii. Calculate polynomial pieces $\langle x(\tau)x^i(0)y^j(0)\rangle$ with the **ergodicity property**: average over all particles \Leftrightarrow time average of one particle over infinite time

$$d_{n \leftarrow Hg}^{\text{false}} = \frac{\hbar |\gamma_n \gamma_{Hg}|}{2c^2} \int_0^\infty d\tau \cos(\omega \tau) \frac{d}{d\tau} \langle x(\tau) B_x(0) + y(\tau) B_y(0) \rangle$$

- 1) Calculate the correlation function with a Monte-Carlo simulation for a given magnetic configuration
- i. Simulate trajectories r(t) = (x(t), y(t), z(t)) of Hg atoms
- ii. Calculate polynomial pieces $\langle x(\tau)x^i(0)y^j(0)\rangle$ with the **ergodicity property**: average over all particles \Leftrightarrow time average of one particle over infinite time

The magic field, take one

4) Set the holding field to a value that cancels the false EDM generated by this magnetic configuration

Example: the "magic" value that cancels the false EDM generated by

The magic field, take two

- > 1st method is biased by the correlation function fit
- The correlation function of a signal is linked to its Power Spectral Density by the Wiener-Khinchin theorem

$$S_{ij}(\omega) = \int_{-\infty}^{+\infty} d\tau \langle x_i(0) x_j(\tau) \rangle e^{-i\omega\tau}$$

The magic field, take two

- > 1st method is biased by the correlation function fit
- The correlation function of a signal is linked to its Power Spectral Density by the Wiener-Khinchin theorem

$$S_{ij}(\omega) = \int_{-\infty}^{+\infty} d\tau \langle x_i(0) x_j(\tau) \rangle e^{-i\omega\tau}$$

ightarrow we can access the false EDM through the PSD

$$S_{ij}(\omega) = \lim_{T \to \infty} \frac{1}{2T} \left| \left(\int_{-\infty}^{+\infty} dt_1 \, x_i(t_1) e^{-i\omega t_1} \right)^* \left(\int_{-\infty}^{+\infty} dt_2 \, x_i(t_2) e^{-i\omega t_2} \right) \right|$$

For a linear vertical gradient field:

$$d_{n \leftarrow Hg}^{\text{false}}(\omega_0) = -\frac{\hbar |\gamma_n \gamma_{Hg}|}{4\pi c^2} \text{P.V} \int_{-\infty}^{+\infty} d\omega \,\omega \,\frac{S_{\chi\chi}(\omega) + S_{\gamma\gamma}(\omega)}{\omega - \omega_0}$$

- 4. Systematics
 - > 1st method is biased by the correlation function fit
 - The correlation function of a signal is linked to its Power Spectral Density by the Wiener-Khinchin theorem

$$S_{ij}(\omega) = \int_{-\infty}^{+\infty} d\tau \langle x_i(0) x_j(\tau) \rangle e^{-i\omega\tau}$$

ightarrow we can access the false EDM through the PSD

$$S_{ij}(\omega) = \lim_{T \to \infty} \frac{1}{2T} \left\{ \left(\int_{-\infty}^{+\infty} dt_1 \, x_i(t_1) e^{-i\omega t_1} \right)^* \left(\int_{-\infty}^{+\infty} dt_2 \, x_i(t_2) e^{-i\omega t_1} \right)^* \right\}$$

For a linear vertical gradient field:

$$d_{n \leftarrow Hg}^{\text{false}}(\omega_0) = -\frac{\hbar |\gamma_n \gamma_{Hg}|}{4\pi c^2} \text{P.V} \int_{-\infty}^{+\infty} d\omega \,\omega \,\frac{S_{\chi\chi}(\omega) + S_{\gamma\gamma}(\omega)}{\omega - \omega_0}$$

The magic field, take two

$$=\cdots=-\frac{\hbar|\gamma_n\gamma_{Hg}|}{4\pi c^2}\frac{1}{N_t}\sum_{\substack{n,k,l}}^{N_t,N_c,N_c}\frac{\Delta t_k\Delta t_l}{\Delta T_n}\int_{-\infty}^{+\infty}d\omega\;\omega\frac{I_k(\omega)I_l^*(\omega)}{\omega-\omega_0}d\omega$$

numerical sum of explicit elementary integrals

- 4. Systematics
 - \geq 1st method is biased by the correlation function fit
 - \geq The correlation function of a signal is linked to its Power Spectral Density by the Wiener-Khinchin theorem

$$S_{ij}(\omega) = \int_{-\infty}^{+\infty} d\tau \, \langle x_i(0) x_j(\tau) \rangle e^{-i\omega\tau}$$

 \rightarrow we can access the false EDM through the PSD

$$=\cdots=-\frac{\hbar|\gamma_n\gamma_{Hg}|}{4\pi c^2}\frac{1}{N_t}\sum_{n,k,l}^{N_t,N_c,N_c}\frac{\Delta t_k\Delta t_l}{\Delta T_n}\int_{-\infty}^{+\infty}d\omega\;\omega\frac{I_k(\omega)I_l^*(\omega)}{\omega-\omega_0}$$

The magic field, take two

numerical sum of explicit elementary integrals

1e-27

Conclusion on systematics

- Non-uniformities and relativistic effects in the magnetic field generate a "false EDM"
- False EDM can be estimated at low fields or suppressed at specifically high fields ("magic fields")
- Different challenges:
 - 1. Low fields: require accurate measurement of generalized gradients
 - 2. <u>Magic fields:</u> require accurate numerical estimation of magic values

 \rightarrow next step: thorough comparison of numerical efficiency of two methods