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1. Definition and
motivations

What is the electric dipole moment?

Spin Y% particle in a magnetic field

e H=—uo-B

* With B = Byu,, precession frequency given by h2rnf = 2u B,
e NeutroninBy =1uT > f~30s!



1. Definition and
motivations

What is the electric dipole moment?

Spin Y% particle in a magnetic field

e H=—uo-B

* With B = Byu,, precession frequency given by h2rnf = 2u B,
e NeutroninBy =1uT > f~30s!

What about a spin 1% particle in an electric field?

e H=-do-E
* With E = Eju,, precession frequency given by A2nf = 2d E,
* Neutronin E =1kV/cm = f < 4 year™?! (according to the current nEDM limit)

< d,, almost zero



1. Definition and
motivations

Why measure the neutron EDM?

np—ng ~ 10—10
ny

Cosmological motivation: explain baryon asymmetry n =

Sakharov conditions for baryogenesis: /

1. Non-conservation of baryonic number
2. Out-of-equilibrium thermal interactions
3. Violation of C and CP symmetries




Definition and
motivations

Why measure the neutron EDM?

np—ng ~ 10—10
ny

Cosmological motivation: explain baryon asymmetry n =

Sakharov conditions for baryogenesis: /

1. Non-conservation of baryonic number
2. Out-of-equilibrium thermal interactions
3. Violation of C and CP symmetries ~_

EDMs are described by couplings that violate CP!

v
A

Violates T - violates CP by CPT 5



1. Definition and
motivations

Formally: CP violating term (EM field and quark coupling)

U - id _ U - id -
L= fouf P == foursf F P L=5fouf PR+ fouysf P

—
H=—-uoc-B—do-E H=—-uo-B+do-E



Definition and
motivations

Formally: CP violating term (EM field and quark coupling)

U - id _ U - id -
L= Efauvf FHY — ?fo-uvysf FHY CP L= Efo-/ivf FHY +?f0,uv]/5f FHY
—
H=—-uoc-B—do-E H=—-uo-B+do-E

In the Standard Model: Y
* CKM phase contribution to quark EDMs through at least 3 loops diagrams A\ W

- very negligible (d,, ~ 10732¢. cm). T ﬁ

a = — - T t > b T ¢ T—

*  QCD contribution —6 G*VG,, should generate huge EDMs (d, ~ 107 t%e.cm). : d d

current limit d,, < 107%%e.cm = 6 < 10~ 1%(strong CP problem). gluon

Beyond the SM:

* (ex) modified Higgs-fermion Yukawa coupling £ = — 2L (k. ffh + iR Fy=fh) generates EDM at 2 loops.
vz \*f fJrs



2. Measurement

How do we measure the neutron EDM?

A 2U

2d 2
inf =—-B +—|E] =) f(TT)—f(Ti)=—%d|E|

-

~ e~ —_——



2. Measurement

How do we measure the neutron EDM?

AA 2 2d 2
onf = "Bt |E| = FON = FOD) = == d |E]

(// .‘ /
Spin 3 Ifd, = 107%%e.cm :
eee. el ~ 30s71 —~
---------- fin
atB = 1uT

atE = 15 kV.cm™1




2. Measurement

What can we do to detect something that small ?

-

-~ -

Maximize the interaction time - Ultra Cold Neutrons

Maximize the statistics

Control the magnetic field

- ~ 30s1 _
atB = 1uT

How do we measure the neutron EDM?

2 2d 2
onf = "BE|E| © fON - f() =——d|E]

\

Ifd, = 107%%e.cm :

atE = 15 kV.cm™1

—> Large cell volume, efficient UCN transport
- Hg co-magnetometry, magnetic shielding (MSR, AMS), field mapping
- Deal with systematics: false EDM, gravitational shift

10



2. Measurement

How do we measure the neutron EDM?

A 2U

2d 2
inf =—-B +—|E] =) f(TT)—f(Ti)=—%d|E|

(\\ ' Spin 3 If d,, = 107%e.cm :
el ~ 3051 N
atB = 1uT

atE =15kV.cm™1

What can we do to detect something that small ?

e Maximize the interaction time - Ultra Cold Neutrons

* Maximize the statistics - Large cell volume, efficient UCN transport

* Control the magnetic field - Hg co-magnetometry, magnetic shielding (MSR, AMS){field mapping))...
- Deal with systematics:ravitational shift, ...
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2. Measurement

Counting spins with the Ramsey method

. [ TOP chamber ]
Polarizing
magnet [ BOT chamber ]\ >
UNs— ___ _— P B,
. . B » ool
(a) Polarized UCNss fill the precession chambers —
@ o B, +B;
[ TOP chamber ] / ]
[ BOT chamber ] B
1 | 0
Y ___“:Spin-sgnsitive C’:-:
e @ | :detectlon B, +B,
NT Nl I :
[
I| A7BOT || a;BOT]!
N7 Nj I

(b) UCNs are guided towards the spin-sensitive detectors.
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2. Measurement

Counting spins with the Ramsey method

. [ TOP chamber ]
Polarizing
magnet [ BOT chamber ] \ i ii’
UNs— __ _— . 8’ . B,
BE P
(a) Polarized UCNs fill the precession chambers | 1 » R @
I ooy B, +B
[ TOP chamber ] / ]
BOT chamber ] \@’
[ B¢ | By
[ )7\ " iSpin-sensitive e — @
| | detection 075 B, +B,
NTOP NTOP | | —_
T 1 | | = 050
| : "
| « 0.25
| NITSOT N?OT , z
| | = 000
[ — | =
(b) UCNSs are guided towards the spin-sensitive detectors. 2'.:. -0.25
E =0.50
-0.75
-1.00

"30.216 30.218 30.220 30.222 30.224 30.226 30.228 30.230
applied pulse frequency / Hz

Up-down spin asymmetry A = precession frequency f



2.

Measurement

30.2365
30.2364

T 30.2363

=
%~ 30.2362-

30.2361

30.2360
3.84246

folfug

R =

3.84248

- v 4 ' B ‘s L
Lt UYL I T g R WAL L L A L W -|.,'-:I " w '_'_:_l i
3 84247 KRR S NP L A AN MOV ¢
Ty ) I
. ]

200 300 400
Cycle number

i

BE BE

500

Hg co-magnetometry to compensate
magnetic field fluctuations

Problem:
Uncertainty on f dominated by magnetic field fluctuations!
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2. Measurement

Hg co-magnetometry to compensate
magnetic field fluctuations

30.2365 - ) s -
30.2364 = #- . ﬂ"“ F‘%ﬂ Y — Problem:
N &~ A, v 4 -“s" Uncertainty on f dominated by magnetic field fluctuations!
T 30.23631 ; ol L -
“530 2362 '%f . %( o
' Fowe Solution:
30.23611 % Measure instead the ratio of mercury and neutron frequencies:
30.2360 f 1% . |E|
3.84246 1 Rz =|—|F " dy,
o ng VHg n ng
S5 w . { —
‘f 3.84247 [T RN \
R Contribution from EDM No contribution from EDM!
—d
364248 5 100 200 300 400 500 fo = ]2/_;; By +n_;t|E| frg = |yﬂ By
Cycle number 21
‘ \ ‘ ‘ ...which is free from the magnetic field fluctuations!
BE BE
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2. Measurement

Overview of n2EDM

Coil systems

MSR .

Vacuum vessel

UCN guides

Precession chambers

Switch

Polarizing magnet

Detectors

16



3.

Field mapping

Polynomial field expansion
+oo

B@) =) D Ginllim(@)

=0 m=-1

How do we parametrize the magnetic field?

17



3.

Field mapping

PonnomiaI field expansion

B(r) —Z Z G i (1)

=0 m=-1

How do we parametrize the magnetic field?

Maxwell’s equations
V-B=0andVXB=0

|
B(r) = VX(r)
2 3 |
with
AX(r,,0) =0

Laplace equation in spherical coordinates
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3.

Field mapping

PonnomiaI field expansion

B(r) —Z Z G i (1)

=0 m=-1

How do we parametrize the magnetic field?

e

Maxwell’s equations
V-B=0andVXB=0

|
B(r) = VX(r)

with
AX(r,,0) =0

Laplace equation in spherical coordinates

=

Harmonic modes I, (1)
deduced from solutions
of Laplace equation

TABLE IV. The basis of harmonic polynomials sorted by degree in cylindrical coordinates.

1 ! n, I, .

0 =1 sing 0s ¢ 0

0 0 0 0 1

0 1 0s ¢ —sing 0

1 -2 psin 2 peos 2 0

1 -1 zsing Cos b psing
1 0 —ip 0 z

1 1 zeos g —zsing peosg
1 2 peos2gp —psin2g 0

2 -3 p* sin 3¢ pPeos 3¢ 0

2 -2 2pzsin 2 2pzcos 2¢ p’sin2¢
2 -1 H —3p*)sing (42 — p*)cos¢ 2pzsing
2 0 -pz 0 It 2
2 1 1422 = 3p%)cos g (p* —42%)sing 2pzcosd
2 2 2pzcos2¢ —2pzsin2¢ p*cos 2
2 3 p*cos 3 —p?sin 3 0
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3. Field mapping
How do we parametrize the magnetic field?

Maxwi”'s equations Harmonic modes M, (1)
c oo i V-B=0andVXB =0 i
PonnomlaI fleld expansion l deduced from solutions

of Laplace equation

B (r) G H (r) ( ) ( ) TABLE IV. The basis of harmonic polynomials sorted by degree in cylindrical coordinates.
ImAim
m n, M
sin cos
1

=0 m=—1 with

AX(r,,0) =0

Laplace equation in spherical coordinates 2 .

—————cocc |~
(=]

S S )

So what do we measure? The generalized gradients G, :
*  “Online” with mercury co-magnetometry and cesium magnetometers.

e “Offline” with the mapper.




3.

Field mapping

One use of field mapping: moving the By coil

» Produce a very uniform BO field (1uT)
» Produce specific gradients
» Hold the UCN polarisation
» Neutron spin manipulation

BO coil

Trim coils

i

e |

: ¢

I |

rJ i |

RF coils

Gradient coil(G10)

21



3.

Field mapping
One use of field mapping: moving the By coil

» Produce a very uniform BO field (1uT)

1e6 Vertical scan at origin, run 475, cycle 22

> Produce specific gradients 1.50
» Hold the UCN polarisation 1.25 1
» Neutron spin manipulation

— 1.001

s
BO coil =~ 0.75

D 550

0.25 1 scan time = 159 seconds
Trim coils Lo 0.00— T - . : ; : : r
i -40 -30 -20 -10 0 10 20 30 40
z (cm)

RF coils

Gradient coil(G10)

22




3.

Field mapping

One use of field mapping: moving the By coil

» Produce a very uniform BO field (1uT)
» Produce specific gradients
» Hold the UCN polarisation
» Neutron spin manipulation

1.0560
BO coil = 1.0558
1.0556
......... 1.0554
Trim coils
RF coils

Gradient coil(G10)

1e6 Vertical scan at origin, run 475, cycle 22

—— polynomial fit (order 10)

Goo = 1.1e+06 pT
Gi1o = 10.46 pT/cm
Gao = 0.16 pT/cmf
Gso = (.01 pT/cmP

—40 -30 -20 ~10 0 10 20 30 40
Z (cm)

23




3. Field mapping

One use of field mapping: moving the By coil

» Produce a very uniform BO field (1uT)
» Produce specific gradients
» Hold the UCN polarisation
» Neutron spin manipulation

BO coil

1e6 Vertical scan at origin, run 475, cycle 22

—— polynomial fit (order 10)

1.0560 Goo = 1.1e+06 pT

Gll) = 10.46 prCm

w 1.0558 Gao = 0.16 pT/cmf
Gs3p =

0.01 pT/cm?

40

Trim coils y T T T T y y y
-40 -30 -20 -10 0 10 20 30
Z (cm)
Finite Element calculation 2> (¢, = 6.45 x 6§,
RF coils
- Absolute Gip from z-scans for two positions of the Bg coil
—— linear fit of up-down average
i Boup
@ Bo down
201 y
Gradient coil(G10) Predicted slope G1p/6z=6.45 (pT/cm)/mm
. Slope from fit G19/6z=6.41 = 0.14 (pT/cm)/mm
E 151 v
|_
e
g 10
Result: we need to move the coil by 3mm! <¢uem °
Gio=0atbz= —3.10*+0.07 mm
0 24

-2 -1 0

Coil displacement 6z (mm)

-3



4. Systematics

An important systematic effect, the “false EDM”

Because the magnetic field is not perfectly uniform and because the mercury atoms and the neutrons do not move at the same velocity,
they do not see the same magnetic field.

This induces extra terms in the frequency ratio that act like EDMs: False neutron EDM induced by

__— the false mercury EDM

2|E]
F d, + dfalse +@+
ﬂhlVHgBo|( n n ne<Hg )

Vn
YHg

R
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4. Systematics

An important systematic effect, the “false EDM”

Because the magnetic field is not perfectly uniform and because the mercury atoms and the neutrons do not move at the same velocity,

they do not see the same magnetic field.
This induces extra termsl|in the frequency ratio that act like EDMs:

Yn 2|E]|

YHg

R

b(t) = [BT(T(T)) + CEZ X f(T)] : [ex + iey] horizontal field fluctuations

non-uniform field + motional field

4000

3000

—e— motional field Ev,(t)/c?, E = 11 kV/cm
—— gradient field —1/2Gx(t), G = 50 pT/cm

2000 Neutrons
t5 1000
3 0 W 1 1  S—
& _1000
—2000
—3000
—4000, 20 40 60 80 100 120

4000

—e— motional field Ev,(t)/c?, E = 11 kV/cm
—— gradient field —1/2Gx(t), G = 50 pT/cm

3000 Hg atoms

2000
1000

field / pT

-1000
—2000

—3000

—-4000

100

120

v, &~ 3m.s

False neutron EDM induced by
the false mercury EDM

/

d dfalse
T[hh/Hg ol( " n(_Hg )

-1

Greater time constants for neutrons than
for Hg means dilated non-uniform field

Motional field larger for fast Hg atoms
than for slow neutrons

~ 150 m.s~

26



4. Systematics

An expression for the false EDM

The false EDM is the difference in frequency shifts of opposite electric field configurations

hly,|
dalss = 4“;' (bwpy(—E) — bwyy(E)))

27



Systematics

An expression for the false EDM

The false EDM is the difference in frequency shifts of opposite electric field configurations

hly,|
dalss = 4“;' (bwpy(—E) — bwyy(E)))

where the frequency shift is given by spin relaxation theory as a function of
the fluctuating transverse magnetic field

2 00
Swyg = Y%JO dz Im[e™“™(b*(0)b(1))]

4 N

Conclusion: the combination of a non-uniform field and moving particles generates a systematic effect

d,fl?_lzg = MJ dt cos(wr)—(x(T)B (0) +y(2)B, (O))

N /

28



4. Systematics

How do we deal with the false EDM?

A) Estimate it . @By= 14T
because d,fl?_lls;,eg has an analytical expression valid for low fields:
hanVHgl
g = == 7 (XBx + yBy)
hlv.y R? H?
= | 8nC2Hg| R? <Glo — G3g <7_T +

...but need to know the generalized gradients accurately

29



4. Systematics

How do we deal with the false EDM?

A) Estimate it
) e @ BO == 1 HT
OR
B) Su ppress it because d,fl?_lls;,eg has an analytical expression valid for low fields:
h|ynYagl
fal _ nlrHg
dictig = ==z~ (*Bx + ¥By)
: ' i
§ é _ h VnyHg 2 RZ HZ
15 % .i. . Z... - 8c? g Glo B 630 7 _T +
= % % ...but need to know the generalized gradients accurately.
5\78 10b N éf‘. . g
o
%}‘“‘“ = * @B, =10 uT “magic field”
‘-o':@g ey, v, N
e because dfalS€ (B ) = 0 for some specific field confi i
0 LTI SR _ netg(Bm) = pecific field configuration
_ ...but no analytical expression.
0 5 10 15 20 25

By I pT

False EDM produced by a linear gradient
field as a function of holding field B, 30



4. Systematics

1)

The magic field, take one

hlyny @ d
d,ffi‘_lﬁeg = %L dt cos(wt) o (x(7)B,(0) + y(7)B,(0))

Calculate the correlation function with a Monte-Carlo simulation
for a given magnetic configuration

Simulate trajectories r(t) = (x(t),y(t), z(t)) of Hg atoms

Calculate polynomial pieces (x(r)xi(O)yf (O)) with the ergodicity property:
average over all particles & time average of one particle over infinite time

1 (00}
lim —J dt x(t)x(t + 1)
T Jo

T—00
1
1 Py
1 () ? r(t+1)
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4. Systematics

1)

2)

The magic field, take one

hlyny @ d
d,ffi‘_lzeg = %L dt cos(wt) o (x(7)B,(0) + y(7)B,(0))

Calculate the correlation function with a Monte-Carlo simulation
for a given magnetic configuration

Simulate trajectories r(t) = (x(t),y(t), z(t)) of Hg atoms

Calculate polynomial pieces (x(r)xi(O)yf (0)) with the ergodicity property:
average over all particles & time average of one particle over infinite time

1 (00}
lim —J dt x(t)x(t + 1)
T Jo

T—00
1
j Py
1 () ? r(t+1)

400 1 + TOMAt values for (x(0)x(T))

350 - —— Fitwith a = 0.275770, b = 1.062974

Fit the correlation function 250 - C(1) = Fe~fT — Se~sT

(x(0)x(T)}em?]
N
s

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
T[ms]
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4. Systematics

1)

2)

3)

The magic field, take one

hlyny @ d
d,ffi‘_lﬁeg = %L dt cos(wt) o (x(7)B,(0) + y(7)B,(0))

Calculate the correlation function with a Monte-Carlo simulation
for a given magnetic configuration

Simulate trajectories r(t) = (x(t),y(t), z(t)) of Hg atoms

Calculate polynomial pieces (x(r)xi(O)yf (0)) with the ergodicity property:
average over all particles & time average of one particle over infinite time

1 (00}
lim —J dt x(t)x(t + 1)
T Jo

T—00
1
j Py
1 () ? r(t+1)

400 1 + TOMAt values for (x(0)x(T))

350 —— Fit with a = 0.275770, b = 1.062974
300 A
250 1 C(t) =Fe /T —Se=sT

200 A

Fit the correlation function

Calculate false EDM

150 4

(x(0)x(T)}em?]

100

50 A

0_

0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
T[ms]
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4. Systematics

1)

2)

3)

The magic field, take one

hlvny *® d
d,ffi‘_lﬁeg = Mf dt cos(wt) o (x(7)B,(0) + y(7)B,(0))
0

2c?
Calcul:itte the corre!ation functi?n with a Monte-Carlo simulation 4) Set the holding field to a value that cancels the false
for a given magnetic configuration EDM generated by this magnetic configuration
Simulate trajectories r(t) = (x(t), y(t), z(t)) of Hg atoms Example: the “magic” value that cancels the false EDM
. . generated by
Calculate polynomial pieces (x(r)xl(O)yJ (0)) with the ergodicity property: —x/2
average over all particles & time average of one particle over infinite time B(x,y,2z) = Gio| —y/2
Z
1 i —
lim —f dt x(t)x(t + 1) s By = 11201
Tooo T 0 \
f le-27
1.0 — G
4 ? % problematic field — Gs
0.8 configurations —— ¢
0 ® i 6.

o
[=)]
1

400 1 + TOMAt values for (x(0)x(T))

350 —— Fit with a = 0.275770, b = 1.062974
300 A
250 C(t) = Fe /T —Se~5?

200 A

dfelss [1027e cm]
o
s

o
[N)

Fit the correlation function

o
o
I

Calculate false EDM

150 4

(x(0)x(T)}em?]

100

0 5 10 15 20 25 30
BoluT]

50 A

0_

00 25 50 75 100 125 15.0 175 20.0 34
T[ms]



4. Systematics

» 15t method is biased by the correlation function fit

» The correlation function of a signal is linked to its Power Spectral
Density by the Wiener-Khinchin theorem

Sij (w) = j dt (xi(o)xj (T)>e—iwr

The magic field, take two
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4. Systematics
The magic field, take two

» 15t method is biased by the correlation function fit

» The correlation function of a signal is linked to its Power Spectral
Density by the Wiener-Khinchin theorem

Sij(w) = j drt (xi(O)x,-(r))e—in

- we can access the false EDM through the PSD

<.[+oodt2 xi(tz)e—iwt2>>

*

T—oo 2

1 e :
Sl](a)) = lim _T<<_[ dtl Xi(tl)e_la)t1>

For a linear vertical gradient field:
4 )
h'VnyHgl p VJ+OO Sx(@) + Syy(w)

drflalse

<—Hg(w0) - = dw w

41rC? o W — Wy
- J




4. Systematics

The magic field, take two

» 15t method is biased by the correlation function fit

» The correlation function of a signal is linked to its Power Spectral NeNeNe o )
Density by the Wiener-Khinchin th _ oo _Dlrrngl 1 S [ g )
ensity by the Wiener-Khinchin theorem ~ 4mc? N, L AT, g w — W,
+oo numerical sum of explicit elementary integrals
Sl](w) =j dt (Xi(O)Xj(T)>e_in le-27
—0 1.01 —— false EDM through correlation function
4 false EDM through PSD
- we can access the false EDM through the PSD 05,
1 + 00 " + 00 T
_ i —iwt —iwt
Sij(w) = Tll_{{)loﬁ (j dty x;(t;)e™"? 1> (j dt, x;(t;)e 2) 9 o6
— 0 —o00 ~
o
—
—, 0.4
oI
8t
fe]
0.2
For a linear vertical gradient field:
4 N\ 0.0 R
*
Avarigl | o (77 Selo) 45, ()
w w . . | . |
dfalse (wy) = _Mp \V dow o —= yYy 0 5 10 15 20 25
n<Hg\*”’0 2 . BruT
4tc o W — Wy olHT]
- /
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4. Systematics

The magic field, take two

» 15t method is biased by the correlation function fit

» The correlation function of a signal is linked to its Power Spectral NN Ne i
Density by the Wi Khinchin th _ _h|ynyHg|i Z AtkAtlJHo dwwlk(w)ll (w)
ensity by the Wiener-Khinchin theorem  4mc? N L AT, g w — W
+oo numerical sum of explicit elementary integrals
Sij ((,()) = j dt (Xi(O)Xj(T)>e_in le-27
—0 1.01 —— false EDM through correlation function
4 false EDM through PSD
- we can access the false EDM through the PSD 05,
1 + 00 . * +00 . .g.
Sij (w) = 71’1—>Holoﬁ (j dt, Xi(tl)e—lwt1> (.[ dt, xi(tz)e—mt2> S 0.61
— 00 — 00 NO
—
—, 0.4
oI
=1
“:OC
. . . L] 0.2
For a linear vertical gradient field:
e N\ 0.0 X .
* +
+ 00 L L J I T S S R S S
dfalse (0) ) _ _ h'VnVHgl PV dew w Sxx(w) + Syy(a)) 0 : 1o 15 20 25
n<Hg 0 4T[C2 o W — Wy / Bo[uT]
(S / Result: magic value is slightly different

B, = 12.0 uT 38



4. Systematics

Conclusion on systematics

Non-uniformities and relativistic effects in the magnetic field generate a “false EDM”
False EDM can be estimated at low fields or suppressed at specifically high fields (“magic fields”)
Different challenges:

1. Low fields: require accurate measurement of generalized gradients

2. Magic fields: require accurate numerical estimation of magic values

- next step: thorough comparison of numerical efficiency of two methods
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