Séminaire doctorant, March 2022

Cosmology with galaxy clusters in the Rubin/LSST era

Constantin Payerne, supervisor: Céline Combet (équipe DARK) Laboratoire de Physique Subatomique et de Cosmologie, Grenoble

VIMOS (ESO)

1. Introduction

- 1. Cosmology with LSST
- 2. Cosmology with galaxy clusters
- 2. Weak gravitational lensing
- 3. Application to DESC simulations
- 4. Conclusions and perspectives

Λ CDM standard cosmology

Only ~ 5 % of matter content is baryonic matter ~ 95 % is unknown

Two hypothetical components:

- 1. Dark matter: attractive effect on dynamics of the Universe
- 2. Dark energy: acts as a negative pressure in the Universe, responsible for the current accelerated expansion

 \rightarrow To constrain the properties of dark matter and dark energy is one of the goals of modern cosmology

Scientific, Experimental and Collaborative context

Rubin observatory:

- 8 meter wide mirror
- CCD camera with 3 billions pixels
- 6 optical filters

LSST - Legacy Survey of Space and Time:

- Sky area: 18 000 deg²
- LSST: 10 years optical survey
- Observation of ~ 10 billion galaxies

www.lsst.org

DESC collaboration: study the nature of dark matter and dark energy via

- Weak gravitational lensing
- Spatial distribution of galaxies
- Type 1a supernovae
- Galaxy clusters

Galaxy clusters

Are the largest gravitationally bound objects in the Universe

- Form within the largest dark matter halos
- $M > 10^{14} M_{\odot}$
- size of ≈ 1 Mpc (= 3.10^{19} km)
- Recently formed object, redshift $z \le 2$: Final step of hierarchical large scale structure formation

Redshift $z \sim$ distance \sim look in the past

Are multi-composite systems, contributions to the total mass:

- \approx 5% of galaxies (Optical/Near Infra-Red)
- \approx 15% of hot gas (10⁷ 10⁸ Kelvin) (X-ray, mm)
- \approx 80% of dark matter
 - *"invisible"*, indirectly accessible from gravitational lensing

ightarrow Galaxy clusters are tracers of the matter density field in the Universe

Numerical simulations Credits: Klaus Dolag

Cosmology with galaxy clusters: the mass function

 \rightarrow Galaxy clusters are tracers of the matter density field

Mass and redshift distribution of galaxy clusters is highly sensitive to cosmology

- Amount of matter Ω_m and of dark energy
- Fluctuation of matter density field σ_8

Cosmology with galaxy clusters: Abundance

Cluster abundance: count galaxy clusters in bins of redshift and mass

$$N(z_{\alpha}, m_{\beta}) = \Omega_{s} \int_{z_{1}}^{z_{2}} dz \int_{m_{1}}^{m_{2}} dm \underbrace{\frac{dn(m, z)}{dm}}_{M} \underbrace{\frac{d^{2}V(z)}{dzd\Omega}}_{Comoving volume (geometry of the Universe)}$$
Halo mass function (Ω_{m}, σ_{8}) Comoving volume (geometry of the Universe)
Mass is not an observable
We do not detect all galaxy clusters
count in bins of redshift and richness λ : count of member galaxies

$$N(z_{\alpha}, \lambda_{\beta}) = \Omega_{s} \int_{z_{1}}^{z_{2}} dz \int_{\lambda_{1}}^{\lambda_{2}} d\lambda \underbrace{\Phi(\lambda, z)}_{m_{min}} \int_{m_{min}}^{m_{max}} dm \frac{dn(m, z)}{dm} \underbrace{P(\lambda \mid m, z)}_{M} \underbrace{\frac{d^{2}V(z)}{dzd\Omega}}_{dz}$$
Selection function
Mass-richness relation

- Selection function depends on detection strategy
- Mass-richness relation can be calibrated using weak lensing

Survey	Sky area (deg2)	Nb of clusters	Redshift range
SDSS (2019)	10 000	8 000	[0.10 - 0.33]
KiDs (2021)	400	3 700	[0.1 - 0.6]
DES Y1 (2021)	1800	7 000	[0.20 - 0.65]
	$\sim 10^3$ clusters		

Some recent cluster abundance analysis at optical wavelength:

Upcoming optical surveys LSST/Euclid: $\sim 100\ 000$ clusters \rightarrow systematics \gg statistical effects

The calibration of the mass-richness relation is crucial for cluster count cosmology

DES Y1:

- Tensions driven by the calibration of the mass-richness relation
- Found $\sim 4\sigma$ tension with other probes

 \rightarrow weak lensing is the main tool to calibrate mass-richness relation

1. Introduction

- 1. Cosmology with LSST
- 2. Cosmology with galaxy clusters
- - 3. Application to DESC simulations
 - 4. Conclusions and perspectives

Weak gravitational lensing by galaxy clusters

Weak lensing:

• Induces deviation of light rays coming from a background source (galaxy) by the potential of the cluster

Two effects on background sources:

- 1. Magnification: modifies location and magnitude of sources
- 2. Deformation: modifies the observed background galaxy shapes $\sim \gamma$

Effect of a point mass distribution on a distribution of spherical objects

 \rightarrow Galaxy shapes can be used to measure the shear

Weak lensing shear and weak lensing mass

Shear from galaxy shapes

• The ellipticity of galaxies is linked to the weak lensing *shear*

 $\epsilon^{\rm obs} \approx \epsilon^{\rm int} + \gamma(R)$

• We estimate the excess surface density

 $\widehat{\Delta\Sigma}(R, z_{\rm l}) = \langle \Sigma_{\rm crit}(z_{\rm gal}, z_{\rm l}) \ \epsilon_{+}^{\rm obs} \rangle$

Critical surface mass density

Tangential ellipticity

From weak lensing to cluster mass ...

$$\Delta \Sigma(R) \text{ depends on } \Sigma(R) = \int_{-\infty}^{+\infty} dz \ \rho_{3d}(r)$$

Integration along the line of sight

 $\rho_{\rm 3d}(r)$: cluster M and intrinsic properties, and contribution from neighbouring halos

Fit of $\Delta\Sigma
ightarrow$ mass M

1. Introduction

- 1. Cosmology with LSST
- 2. Cosmology with galaxy clusters
- 2. Weak gravitational lensing
- - 4. Conclusions and perspectives

The DESC Data Challenge 2 simulated dataset

Data Challenge 2:

- Dark matter N-body simulation of large scale structure formation $\sim 400 \text{ deg}^2$
- Identified dark matter halos, filled with galaxies

Lens catalogs:

- Dark matter halos (with "true" masses and redshifts)
- Detected galaxy clusters (with observed richnesses and observed redshifts)

Background source catalogs:

			Bridle et al. 2009
Output of the simulation cosmoDC2	Atmospheric and instrumental effe	cts	DC2object
Add lensing effect, "true" redshifts, ideal shap magnitudes, etc.	bes,	measured object shapes, measure etc.	s, measured d magnitudes,

First step: Extract background galaxy catalogs for each lens

$$N(z_{\alpha}, \lambda_{\beta}) = \Omega_{s} \int_{z_{1}}^{z_{2}} dz \int_{\lambda_{1}}^{\lambda_{2}} d\lambda \ \Phi(\lambda, z) \int_{m_{\min}}^{m_{\max}} dm \frac{dn(m, z)}{dm} P(\lambda \mid m, z) \frac{d^{2}V(z)}{dzd\Omega}$$

Calibration with weak lensing $\Delta \Sigma$
Objectives:
1. DESC-CLMM: Develop functionalities for the estimation
of $\Delta \Sigma$
2. DC2 dataset: Test possible sources of systematics on the
mass-richness relation

2.

Methodology: Stacked shear analysis

Stacked $\Delta\Sigma$ around many galaxy clusters:

• The individual $\widehat{\Delta\Sigma}$ very noisy \rightarrow stack $\widehat{\Delta\Sigma}$ (high SNR)

Implementation in DESC-CLMM code (Aguena et al., 2021)

noise

14.5

14.6

Methodology: DC2 mass-richness relation

redMaPPer galaxy cluster catalog

- 4000 clusters
- Output:
 - cluster sky position
 - redshift
 - richness λ ~ number of galaxies within the cluster

Methodology: from weak lensing to mass-richness relation

Test the impact of various possible sources of systematics on $\langle M_{\rm WL} | \lambda, z \rangle$

By matching "true" masses and detected richnesses \rightarrow fiducial constraints of $\langle M_{\text{true}} | \lambda, z \rangle$

Effect of modelling choices

Different contributions in $\Delta\Sigma(R) = \Delta\Sigma_{1h}(R) + \Delta\Sigma_{2h}(R)$

- 1. $\Delta \Sigma_{1h}$: Intrinsic properties mass $M_{, concentration c}$ ($R \leq 5$ Mpc)
- 2. $\Delta \Sigma_{2h}$: Neighbouring halos ($R \ge 5$ Mpc)

- *c*(*M*) relation frequently used
- Results might be sensitive to c(M) choices

This work:

- Tests of various c(M) up to $\langle M_{\rm WL} | \lambda, z \rangle$
- Smaller error-bars, but may bias results (ex: Duffy08)

 \rightarrow letting the concentration free appears to be a good compromise

Joint Posterior distribution of $log_{10}(M_0), F_{\lambda}, G_z$

Photometric redshifts:

• Are reconstructed from magnitudes in each filter

Affects the weak lensing weights $\ \rightarrow M_{\rm WL}$

$$w_{l,gal} \propto \left(\int_{z_l}^{+\infty} dz_{gal} \ p(z_{gal}) \ \Sigma_{crit}(z_{gal}, z_l)^{-1} \right)^2$$

This work:

- 2 different algorithms: BPZ, FleXZboost
- Good agreement with ideal redshifts
- Here, cosmoDC2 magnitudes → Ongoing tests on DC2object magnitudes ("realistic" magnitudes)

Joint Posterior distribution of $\log_{10}(M_0), F_{\lambda}, G_z$

 $\langle M_{\rm WL} | \lambda, z \rangle$ not sensitive to photometric redshifts

Shape catalogs in DC2 dataset

Effect of photometric redshift and shape measurement

HSM:

- By hand calibration procedure: $\epsilon_{\rm obs} \rightarrow \epsilon_{\rm true}$
- Unfortunately, still high tension $\log_{10}(M_0)$
- Ongoing works to solve this issue

Metacalibration:

- Surprising tension on $\log_{10}(M_0)$
- Highlight problems with the run of Metacalibration
- Noticed independently from other probes within DESC
- Mitigation effort in progress within DESC

Joint Posterior distribution of $\log_{10}(M_0), F_{\lambda}, G_z$

 \rightarrow use of measured shapes + less galaxies increase error bars

Conclusions

$$N(z_{\alpha},\lambda_{\beta}) = \Omega_{s} \int_{z_{1}}^{z_{2}} dz \int_{\lambda_{1}}^{\lambda_{2}} d\lambda \ \Phi(\lambda,z) \ \int_{m_{\min}}^{m_{\max}} dm \frac{dn(m,z)}{dm} P(\lambda \mid m,z) \frac{d^{2}V(z)}{dzd\Omega}$$

Conclusions:

Mass-richness rel

- 1. Weak lensing is the main tool to constrain mass-richness relation
- 2. Weak lensing mass is affected by different systematics:
 - A. Modelling: free concentration is a good compromise
 - B. Photometric redshift: no sizeable impact
 - C. Shape measurement + less objects: increases error bars, still need to understand calibration

Work within DESC Collaboration

- 1. Refereed DESC notes on mass-richness relation in DC2
 - 1. Effect of photometric redshifts and shape measurements
 - 2. Effect of modelling choices
- 2. \rightarrow paper in prep.
- 3. Co-author of DESC CLMM v1.0 (Aguena et al. 2021)
- 4. Co-author of the cosmoDC2 validation paper (Kovacs et al. 2021)

Using DESC tools

. . .

CLMM (data analysis + prediction) CCL (prediction) GCRCatalogs (read galaxy catalogs)

Greneble

Perspectives: Cluster abundance cosmology pipeline in DESC

Cluster abundance cosmology \rightarrow From galaxy cluster catalog to cosmological parameters

Developing DESC cluster abundance software

- Prediction of cluster abundance
- Estimation/prediction of covariance matrix
- Likelihood implementation

 \rightarrow test changes of $\langle M_{\rm WL}\,|\,\lambda,z\rangle$ on cosmological parameter estimation

Which likelihood for cluster count cosmology ?

• Project with Calum Murray

