The Large Millimeter Telescope Survey of the Central Molecular Zone of the Milky Way

Q. Daniel Wang (PI) **Yuping Tang**, Grant Wilson, Min Yun, Mark Heyer Robert Gutermuth, Daniela Calzetti (University of Massachusetts) Miguel Chavez, Sergiy Silich, David Sanchez-Arguelles, Milagros Zeballos, Jorge Zavala, and Jonathan Leon-Tavares (INAOE), Laurent Loinard (UNAM), & John Bally (CU)

Dependence of dust properties on the environment

- Metal abundances \rightarrow raw material for dust
- Turbulence, as well as density and temperature of the ISM → dust formation, growth, and/or destruction
- Radiation field, cosmic ray, B-field → dust thermal, emission, and spin states

Little is known on dust properties in extreme environments: e.g., galactic nuclei & extreme star forming regions seen at high-z!

Study dust properties in the central molecular zone

Motivation:

- An excellent local lab for a close-up study of dust under extreme condition
- Necessary step to understand the overall stellar structure, star formation history, etc.

• Approach:

- Map out the emission of dust to infer its temperature, emissivity, and column density (or $N_{\rm H})$ distributions.

The Large Millimeter Telescope

Only 32 m diameter was ready in 2014.

The LMT, jointly constructed by Mexico and UMass, is a 50m diameter millimeter-wave telescope at the summit of Volcano Sierra Negra at an elevation of 4600m.

LMT/AzTEC 1-mm map of the CMZ

1-mm composite map of the CMZ

Constructed from the maps of the LMT/AzTEC 1-mm, the CSO/Bolocam 1-mm (beam=33") and Planck/HFI 353 GHz surveys.

Tang, Wang et al. 2021

Hierarchical Bayesian SED Fitting

- Dust emission at 1 mm is optically-thin and is only linearly dependent of temperature.
- MCMC Bayesian SED is fitted in 5 bands: 4 from Herschel and 1 from the LMT, covering the 160 µm -1.1 mm range.
- N_H distribution is modeled as a hyper prior: a lognormal + (broken) power law. T=25K

$$F_{ix,iy}(\nu_j) = [1 - exp(-\tau_{ix,iy,\nu_j})]B_{\nu_j}(T_{ix,iy})\Omega_j$$
$$\tau_{ix,iy,\nu_j} = \kappa_0(\frac{\nu_j}{\nu_0})^{\beta_{ix,iy}}\mu m_H \times N_{H_2ix,iy} \times 1\%$$

Hierarchical Bayesian SED Fitting

1-T dust SED modeling: paramter maps

Tang et al. 2021

1-T dust SED modeling: dust parameters

Dust emissivity index increases with N_H

- → a deficiency of large grains (e.g., due to turbulent shattering) and/or a fundamental change in dust optical properties (crystallization).
- → partly explaining the low dust temperature inferred previously for the CMZ.

1-T dust SED modeling: $N_H PDF$

 N_H -PDF is better fitted by a broken power-law signature at high N_H ; no significant dependence on the cloud location \rightarrow consistent with the low star formation rate of the clouds.

Summary

- We have made a wide-field, ~10" resolution survey of 1.1-mm continuum emission from the CMZ.
- SED analysis of the combined complementary data sets \rightarrow
 - Emissivity index increases from 1.8 to 2.4 with N_{H} =10^{22.5} to 10^{23.5} cm⁻².
 - this correlation is not due to model degeneracy and may be caused by dust grain shattering in a highly turbulent environment
 - Dust temperature depends on the assumed index, changes; assuming the $N_{\rm H}$ dependence leads to a (up to 50%) higher dust temperature.
 - $N_{\rm H}\text{-}PDF$ is a good indicator of the cloud structure at a spatial scale of 0.5 pc and typically shows a broken power-law signature at high $N_{\rm H}$

Future work

- Extend the wavelength coverage of the dust emission (3-bands with LMT/ToITEC), particularly powerful for accurately determining β and decomposing nonthermal and ionized gas contributions at longer wavelengths.
- Construct single disk + ALMA dust emission map.
- Map out various key molecular lines to study the kinematics and chemistry of CMZ.
- Constrain 3-D spatial distributions of stars, dust, and gas properties.

Hierarchical Bayesian analysis of dust parameters

$$P(\mu, \Sigma | D) = \prod_{i} P(D | \mathbf{x}_{i}) P(\mathbf{x}_{i} | \mu, \Sigma) \times P(\mu, \Sigma)$$
$$P(\mathbf{x}_{i} | \mu, \Sigma) \propto \frac{1}{|\Sigma|^{1/2}} \times [1 + \frac{1}{d} (\mathbf{x}_{i} - \mu)^{T} \Sigma^{-1} (\mathbf{x}_{i} - \mu)]^{-(d+2)/2}$$

 $\mathbf{x_i} = (ln(T_i), \beta_i)$

Enhanced HCN line emission in the Sgr A cloud complex

The enhancement can be explained by high free electron density in low density regions, which could be due to shock X-ray/CR (Goldsmith & Kauffmann 2017).

All data smoothed to the angular resolution of the Mopra HCN(J=1-0) image (39"; Jones et al. 2012)

Hierarchical Bayesian SED Fitting

