Lessons learnt from observing a z~13 candidate with ALMA

Melanie Kaasinen (ESO)

To see or not to see a z~13 galaxy, that is the question

Targeting the [C II] $158 \mu \mathrm{~m}$ emission line of HD1 with ALMA

M. Kaasinen, J. van Marrewijk, G. Popping, M. Ginolfi, L. Di Mascolo,

T. Mroczkowski, A. Concas, C. Di Cesare, M. Killi, I. Langan (A\&A, 671, 29)

To see or not to see a z~13 galaxy, that is the question

Targeting the [C II] $158 \mu \mathrm{~m}$ emission line of HD1 with ALMA
M. Kaasinen, J. van Marrewijk, G. Popping, M. Ginolfi, L. Di Mascolo,

T. Mroczkowski, A. Concas, C. Di Cesare, M. Killi, I. Langan (A\&A, 671, 29)

And so it begins... "Who's there?"

The Astrophysical Journal, 929:1 (15pp), 2022 April 10 on arxiv: Dec 2021

OPEN ACCESS

A Search for \boldsymbol{H}-Dropout Lyman Break Galaxies at $\boldsymbol{z} \boldsymbol{\sim 1 2 - 1 6}$

Yuichi Harikane ${ }^{1,2}{ }^{(1)}$, Akio K. Inoue ${ }^{3,4}$ (1) , Ken Mawatari ${ }^{5}$ (1) , Takuya Hashimoto ${ }^{6}{ }^{(1)}$, Satoshi Yamanaka ${ }^{4,7,8}{ }^{(1)}$, Yoshinobu Fudamoto ${ }^{4,5}{ }^{(1)}$, Hiroshi Matsuo $0^{5,9}{ }^{(1)}$, Yoichi Tamura ${ }^{10}{ }^{(1)}$, Pratika Dayal ${ }^{11}{ }^{(1)}$, L. Y. Aaron Yung ${ }^{12} \mathbb{C D}^{(1)}$, Anne Hutter ${ }^{11}{ }^{(1)}$, Fabio Pacucci ${ }^{13,14}$ (1), Yuma Sugahara ${ }^{4,5}$ (10) , and Anton M. Koekemoer ${ }^{15}$ (1)

Two Remarkably Luminous Galaxy Candidates at $z \approx 11-13$ Revealed by $\boldsymbol{J} \boldsymbol{W S T}$

Rohan P. Naidu, ${ }^{1}$ Pascal A. Oesch, ${ }^{2,3}$ Pieter van Dokkum, ${ }^{4}$ Erica J. Nelson, ${ }^{5}$ Katherine A. Suess, ${ }^{6,7}$ Katherine E. Whitaker,,${ }^{8,9}$ Natalie Allen, ${ }^{3}$ Rachel Bezanson, ${ }^{10}$ Rychard Bouwens, ${ }^{11}$ Gabriel Brammer, ${ }^{3}$ Charlie Conroy, ${ }^{1}$ Garth Illingworth, ${ }^{12}$ Ivo Labbe, ${ }^{13}$ Joel Leja, ${ }^{14,15,16}$ Ecaterina Leonova, ${ }^{17}$ Jorryt Matthee, ${ }^{18}$

Sedona H. Price, ${ }^{19}$ David J. Setton ${ }^{10}$ Victoria Strait, ${ }^{3}$ Mauro Stefanon, ${ }^{20,21}$ Sandro Tacchella, ${ }^{22,} 23$ Sune Toft, ${ }^{3}$ John R. Weaver, ${ }^{8}$ and Andrea Weibel ${ }^{2}$

Early Results from GLASS-JWST. III. Galaxy Candidates at $\boldsymbol{z} \sim \mathbf{9 - 1 5}$

Karl Glazebrook ${ }^{11}$ (1) , Claudio Grillo ${ }^{12,13}{ }^{(1)}$, Sara Mascia ${ }^{1}{ }^{(1)}$, Charlotte Mason ${ }^{14,15}{ }^{(1)}$, Amata Mercurio ${ }^{16}$ (1),
Takahiro Morishita ${ }^{17}$ (1) , Themiya Nanayakkara ${ }^{11}$ (1) , Laura Pentericci ${ }^{1}$ (1) , Piero Rosati ${ }^{18,19}{ }^{(1)}$, Benedetta Vulcani ${ }^{20}{ }^{(1)}$, Xin Wang ${ }^{21}$ (1) , and Lilan Yang ${ }^{22}$ (1)

Revealing Galaxy Candidates out to $z \sim 16$ with JWST Observations of the Lensing Cluster SMACS0723

Hakim Atek ${ }^{1 \star}$, Marko Shuntov ${ }^{1}$, Lukas J. Furtak ${ }^{2}$, Johan Richard ${ }^{3}$, Jean-Paul Kneib ${ }^{4}$,
Guillaume Mahler ${ }^{5}$ Adi Zitrin ${ }^{2}$, Henry Joy McCracken ${ }^{1}$ Clotilde Laigle ${ }^{1}$ Stéphane Charlot ${ }^{1}$
${ }^{1}$ Institut d'Astrophysique de Paris, CNRS, Sorbonne Université, 98 bis Boulevard Arago, 75014, Paris, France
${ }^{2}$ Physics Department, Ben-Gurion University of the Negev, P.O. Box 653, Be'er-Sheva 84105, Israel
${ }^{3}$ Univ Lyon, Univ Lyon1, Ens de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, F-69230, Saint-Genis Laval, France
${ }^{4}$ Laboratoire d'Astrophysique, Ecole Polytechnique Fédérale de Lausanne, Observatoire de Sauverny, CH-1290 Versoix, Switzerland
${ }^{5}$ Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE, UK

The evolution of the galaxy UV luminosity function at redshifts $\mathrm{z} \simeq 8 \mathbf{- 1 5}$ from deep JWST and ground-based near-infrared imaging
C. T. Donnan ${ }^{1 \star}$, D. J. McLeod ${ }^{1}$, J. S. Dunlop ${ }^{1}$, R. J. McLure ${ }^{1}$, A. C. Carnall ${ }^{1}$, R. Begley ${ }^{1}$, F. Cullen ${ }^{1}$ M. L. Hamadouche ${ }^{1}$, R. A. A. Bowler ${ }^{2}$, D. Magee ${ }^{3}$, H. J. McCracken ${ }^{4}$, B. Milvang-Jensen ${ }^{5,6}$
A. Moneti ${ }^{4}$ \& T. Targett ${ }^{7}$

A Comprehensive Study on Galaxies at $z \sim 9-17$ Found in the Early JWST Data:

 UV Luminosity Functions and Cosmic Star-Formation History at the Pre-Reionization EpochYuichi Harikane, ${ }^{1}$ Masami Ouchi, $, 1,3$ Masamune Oguri, ${ }^{4,5}$ Yoshiaki Ono, ${ }^{1}$ Kimihiko Nakajima, ${ }^{2}$ Yuki Isobe, ${ }^{1,6}$ Hiroya Umeda, ${ }^{1,6}$ Ken Mawatari, ${ }^{2}$ and Yechi Zhang ${ }^{1,7}$

Yet, these be only candidates

how to spectroscopically confirm them?

ALMA

Spectroscopic confirmation

Spectroscopic confirmation

Spectroscopic confirmation with ALMA at z~9

Spectroscopic confirmation with ALMA at z~13

Spectroscopic confirmation with ALMA at z~16

Previous spectroscopic confirmation with ALMA

[0 III] $88 \mu \mathrm{~m}$ emission of MACS1149-JD1 at $\mathrm{z}=9.1$ (Hashimoto +2018)
Redshift

[O III] $88 \mu \mathrm{~m}$ and [C II] $158 \mu \mathrm{~m}$ emission of MACS0416_Y1 at $z=8.3$ (Tamura+2019, Bakx+2020)

ALMA Band 6 observations of HD1

Harikane et al. (2022)
spectrum within $1^{\prime \prime}$
circular aperture
(equivalent to $\sim 3.5 \mathrm{kpc}$
at $\mathrm{z}=13.27$)
beam size: 0.51 " x $0.87{ }^{\prime \prime}$

New ALMA Band 4 (DDT) observations of HD1

Kaasinen et al. (2022)
expected based on tentative [0 III]

New ALMA Band 4 (DDT) observations of HD1

Kaasinen et al. (2022)
expected based on tentative [0 III]

A potential [C II] $158 \mu \mathrm{~m}$ line, both spatially and spectrally offset?

ALMA Band 6 observations of HD1

Kaasinen et al. (2022)
equivalent to $\sim 3.5 \mathrm{kpc}$
beam size: $0.51^{\prime \prime} \times 0.87^{\prime \prime}$

We recover the same tentative 3.8σ [0 III$] 88 \mu \mathrm{~m}$ as Harikane +2022 , although the spectrum extracted from ~beam size is not convincing

ALMA Band 6 observations of HD1

Kaasinen et al. (2022)

The tentative 3.8σ [0 III$] 88 \mu \mathrm{~m}$ feature is highly sensitive to the line width and aperture size, any narrower and it's not a line, any smaller aperture and it's not a line

Though this be madness, yet there be method in't

Hamlet, Shakespeare

ALMA noise properties - pixels outside source

Joshiwa van Marrewijk (Kaasinen+2022)

Normalized value of $1=$ pixel value of tentative line peak

- In both the band 4 and 6 data, there are many peaks of higher significance outside the source position
- The pixel values follow a Gaussian distribution

ALMA noise properties - pixels outside source

Joshiwa van Marrewijk (Kaasinen+2022)

Created 10 pure noise cubes each by jack-knifing i.e. randomly inverting sign of data in uv space and re-imaging

- make moment-0 maps over different integration widths

ALMA noise properties - pixels outside source

Joshiwa van Marrewijk (Kaasinen+2022)

ALMA noise properties - pixels outside source

Joshiwa van Marrewijk (Kaasinen+2022)
 significance than the source (that are purely noise)
For most pure noise cubes, there are many pixels of greater

Line finding

For real and mock noise cubes,
find lines of \geq potential [0 III] $88 \mu \mathrm{~m}$ feature S / N
**Line-finding code from Béthermin et al. (2020) and Ginolfi et al. (2022)

+ FindClump (Walter+2016)

Line finding

For real and mock noise cubes,

find lines of \geq potential [0 III] $88 \mu \mathrm{~m}$ feature S / N

- loop over line widths of $200-800 \mathrm{~km} / \mathrm{s}$
- collapse over this width and search for peaks in moment 0 map
- extract spectrum at moment-0 peak position and determine the spectral S / N
- keep feature if also over spectral S / N threshold
- remove any duplicates

Line finding

$$
\text { fidelity }(S / N)=1 \cdot \frac{N_{\text {neg }}(S / N)}{N_{\text {pos }}(S / N)}
$$

Line finding

$$
\text { fidelity }(S / N)=1-\frac{N_{\text {neg }}(S / N)}{N_{\text {pos }}(S / N)}
$$

Line finding within 10 kpc of expected source

For real and mock noise cubes,
find lines of \geq potential [0 III] $88 \mu \mathrm{~m}$ feature S / N

Line finding

Band 4 noise cubes:

- $5 / 10$ cubes have ≥ 1 positive $\geq 3.8 \sigma$ feature
- $3 / 10$ cubes have ≥ 1 negative $\geq 3.8 \sigma$ feature [CII] line 50% consistent with being noise

Band 6 noise cubes:

- all cubes have ≥ 1 positive $\geq 3.8 \sigma$ feature, mean of 6 features per cube
- all cubes have ≥ 1 negative $\geq 3.8 \sigma$ feature, with a mean of 7 such features
[0 IIII] line is fully consistent with being noise

Matching peaks: <1000 km/s, < 10 kpc

Real data: 1 matched positive peak (the two tentative lines)

Matched "peaks": <1000 km/s, <10 kpc

1 matched, positive $>3.8 \sigma$ feature in data

Matched "peaks": <1000 km/s, <10 kpc

1 matched, positive > 3.8σ feature in data
mean of 0.5 positive $>3.8 \sigma$ features in noise cubes

Matched "peaks": <1000 km/s, <10 kpc

1 matched, positive $>3.8 \sigma$ feature in data mean of 0.5 positive $>3.8 \sigma$ features in noise cubes
many matched cubes with >1 pair of $>3.8 \sigma$ features

Matched "peaks": <1000 km/s, <10 kpc

1 matched, positive $>3.8 \sigma$ feature in data mean of 0.5 positive $>3.8 \sigma$ features in noise cubes
many matched cubes with >1 pair of $>3.8 \sigma$ features
$\mathrm{N}_{\text {matched }}$ only drops to 0 at $\mathrm{S} / \mathrm{N}=4.4$

What is the likelihood of picking up two, $\geq 3.8 \sigma$ features, neither of which are real

 line emission?
at least 50\%

3 redshift solutions

2~0.3

- HCN(2-1), CO(3-2), potentially covered
- lines too faint for a dust-rich but barely star-forming dwarf
- lack of line and continuum detections consistent

3 redshift solutions

z~0.3

- $\mathrm{HCN}(2-1), \mathrm{CO}(3-2)$, potentially covered
- lines too faint for a dust-rich but barely star-forming dwarf
- lack of line and continuum detections consistent

z~4

- CO(6-5) or CO(10-9) could be covered
- lines too faint for a low-Av, low-SFR galaxy
- lack of line and continuum detections consistent

3 redshift solutions

z~0.3

- $\operatorname{HCN}(2-1), \mathrm{CO}(3-2)$, potentially covered
- lines too faint for a dust-rich but barely star-forming dwarf
- lack of line and continuum detections consistent

z~4

- $\mathrm{CO}(6-5)$ or $\mathrm{CO}(10-9)$ could be covered
- lines too faint for a low-Av, low-SFR galaxy
- lack of line and continuum detections consistent
z~13
- no [0 III] or [C II] detected
- low metallicity, low ionisation parameter and/or high gas density
- lack of line and continuum detections consistent

3 redshift solutions

2~0.3

- $\operatorname{HCN}(2-1), \mathrm{CO}(3-2)$, potentially covered
- lines too faint for a dust-rich but barely star-forming dwarf
- lack of line and continuum detections consistent

2~4

- CO(6-5) or CO(10-9) could be covered
- lines too faint for a low-Av, low-SFR galaxy
- lack of line and continuum detections consistent

z~13

- no [0 III] or [C II] detected
- low metallicity, low ionisation parameter and/or high gas density
- lack of line and continuum detections consistent
- could also simply be at $\mathrm{z}>14.3$ in which case [0 III] and [C II] not covered

Take-away

1) We cannot rule out that HD1 is a $\mathbf{z} \sim 13$ galaxy, but the current data do not confirm it. In this there is nothing either good or bad, but thinking makes it so (Shakespeare)

Take-away

1) We cannot rule out that HD1 is a $2 \sim 13$ galaxy, but the current data do not confirm it. In this there is nothing either good or bad, but thinking makes it so (Shakespeare)
2) To discover where and exactly what type of galaxy HD1 is will require deeper spectroscopy, most likely with NIRSpec

Curtis-Lake+2022

Lessons

1) Know thy data! All too often, we are willing to trust a 3-4 6 peak at the position where we expect to find it. But without testing how likely this is to be a noise fluctuation, we may be sorely mistaken.
2) ALMA is not a redshift machine. With only $1-2 \mathrm{~h}$ on source, there are no convincing detections of $z>10$ candidates yet

Stay tuned

We - van Marrewijk, J.; Kaasinen, M; et al. (in prep) - are developing tool for the community
\rightarrow testing underway for $\mathrm{z}>10$ candidates with ALMA DDT observations

ID	HD1	GLASS-z12	GLASS-z10	S5-z17-1
Paper reporting tentative detection	Harikane+2022	Bakx+2022	Yoon+2022	Fujimoto+2022
Paper reporting tentative detection	Kaasinen+2022	Popping+2022		
S/N of tentative [0 III]	3.8	5.8	4.4	5.1
z proposed	13.27	12.12	10.38	16.01
Spatial offset		$0.5(1.9 \mathrm{kpc})$	$0 .{ }^{\prime \prime} 17(0.7 \mathrm{kpc})$	

Finding high-z candidates via the Lyman Break

Credit: S Dunlop

First spectroscopic confirmation with JWST

z=9.76 galaxy
Roberts-Borsani+, Oct 2022

More recently, 4 galaxies at z>10

Curtis-Lake+, Dec 2022

