CONCERTO: instrument and first results

Observing the Universe at mm wavelengths 27 June 2023

Alessandro Fasano on behalf of the CONCERTO collaboration

I. Project overview and science drivers II. CONCERTO instrument III. Installation and first results Conclusions

<u>I.</u> Project overview and science drivers

The CONCERTO project

Grant ERC funding to fabricate, install and observe with the CONCERTO instrument @ APEX telescope.

Start: January 2019.

LAM and Grenoble (Institut Néel, IPAG and LPSC) collaboration. PI: Guilaine Lagache (LAM) Instrument PI: Alessandro Monfardini (Institut Néel)

ERC (project CONCERTO, grant agreement No78812) LabEx FOCUS ANR-11-LABY (113

Spectro-imager @ mm-wavelength Large field of view (FoV) Low spectral resolution APEX telescope 11-m illuminated diameter @ 5100 m asl

Science driver	Scientific target
Primary	Observation of the [CII]-emission line
Secondary	Observation of galaxy cluster t/k-SZ and Galactic Dust

ALLOCATED TIME

- [CII]: 800 hours ESO/OSO + 65 hours CL
- SZ+GD: 2 semesters (P109-P110), 11 programs, 465 hours

II. CONCERTO instrument

The CONCERTO chart: the instrument in numbers

REQUIREMENTS

 Maximum sensitivity and fast response high sensitivity detectors
 Large survey area and band 130-310 GHz ~few degrees
 Low Spectral resolution ~1.5 GHz
 Moderate angular resolution at small angular scales 3-D power spectrum is

dominated by shot noise rather than clustering of galaxies.

[Catalano et al. EPJ 2022]

FTS Technique - Fast spectrometer mm excursion, fast acquisition, avoid 1/f noise from the atmosphere Double-array composed of 4 304 total KIDs Telescope : 11-m illuminated, APEX 18.6 arcmin corrected FP angular resolution from about

35 to 30 arcsec

1 KID recovering all the spectrum with one <u>interferogram</u>. "Interferogram": the interferometric pattern obtained by introducing an optical path difference.

The CONCERTO instrument

The "flavor" of the CONCERTO data

III. Installation and first results

Installation to APEX telescope in Chile (5 100 m a.s.l.)

2021 6th April, installation start 10th April, cooldown start 12th April, base temperature achieved (60 mK) Technical commissioning start 2nd of May → Crab 4th May, first observation from remote

The major systematics tackled The vibration of the FTS polarizer

Sample number

ESO press release

First extended source detected: Crab nebula 2.5 minutes of integration

Results on-sky Photometric measurements

Results on-sky Noise equivalent flux density (NEFD)

Thus, no major issue is highlighted in the observations in terms of overall noise.

Results on-sky Preliminary spectroscopic results

Study the dust emission

Orion pure photometry

Results on-sky Orion spectral mapping

Example of spectral binning @ 6 GHz resolution

FACT:

• Spectral mapping capability for large areas

CONCERTO uninstall May 2023

Lifted in the boxes to be shipped-back to Europe

The empty space left in the APEX C-cabin

all good things must come to an end

Conclusions

CONCERTO has been successfully installed at APEX in April 2021, in time with the ERC schedule (despite the SARS-CoV-2 related difficulties).

649 hours collected on-field for the COSMOS project.300 hours collected for galaxy clusters.A total of 50 days of data for 174 Tb (compression factor: 5)

CONCERTO instrument uninstalled from APEX telescope in May 2023.

Full collaboration thrust focused on spectroscopy. We entered in the phase of the data exploitation.

QUESTIONS?

... at the Atacama desert

Measurement and compensation of the membrane vibrations

Fully operational:from December 2021: OPD distortion monitoring,

• From April 2022: active counter system.

Commissioning results on-sky Focal plane

The CONCERTO detectors

A CONCERTO 2152-LEKID-pixels Six feedlines, microstrip coupling (front-illuminated) array

Cat's Paw nebula (NGC6334) size on top of a CONCERTO array (18.6arc-min)

CPW (NIKA1, KISS) versus Microstrip (NIKA2, CONCERTO)

For CONCERTO bands, we have used ad-hoc substrates of $105 \mu m$ (HF) and $125 \mu m$ (LF).

Thin Al (20nm) on the front, Al-Au on the back (RF and thermalisation)

- → **High array yield** (no more limited by litho but wafer manipulation)
- → Typically around 90% identified resonances
- \rightarrow Made a number of arrays to select the "flight" ones

Credit: A. Monfardini

Spectrometry solutions

Science driver I: Intensity mapping of [CII]-line

[CII]-line It is among the brightest lines originating from star-forming galaxies and it is a reliable tracer of star formation on global scale. Red-shifted on transparent mm-atmospheric window.

Goal	Answer the questions of whether dusty star-formation contributes to early galaxy evolution, and whether dusty galaxies play an important role in reionization
Strategy	<u>3-D intensity mapping</u> of the [CII] fluctuations

3-D mapping:

the third dimension is obtained observing at several frequencies, i.e, several redshifts.

Intensity mapping:

measure angular fluctuations in the brightness of the sky.

Science driver II: Galaxy cluster via Sunyaev-Zel'dovich effect

Goal	Use spectroscopy to fully separate the different components and extract physical information: pressure, temperature, density and LOS velocity
Strategy	Spectrometric mapping