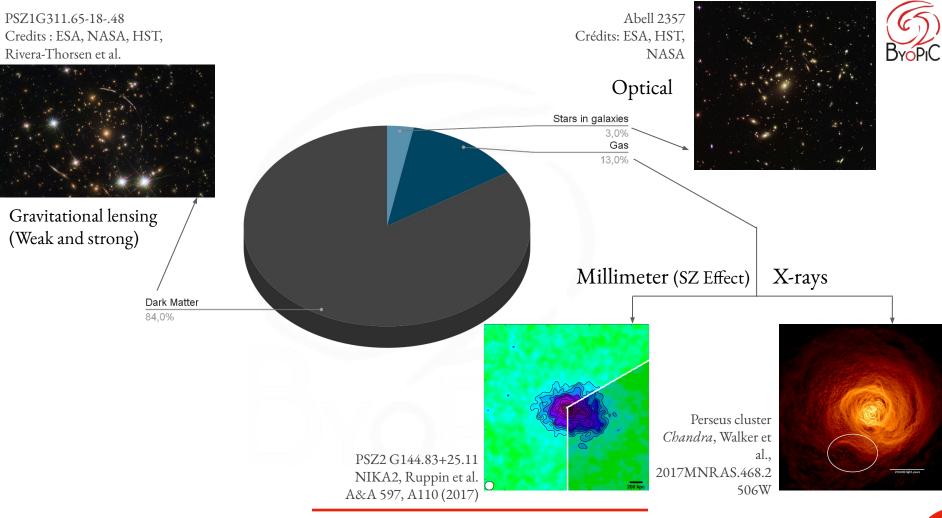
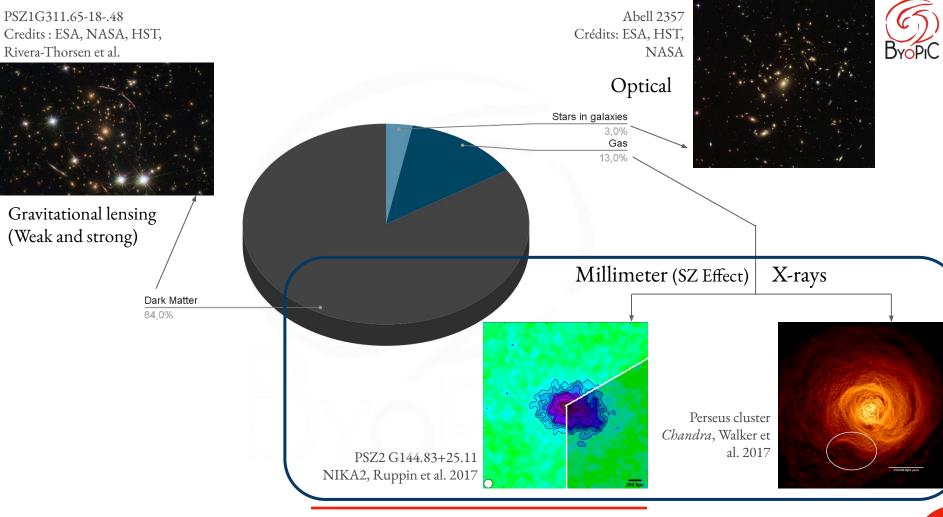


Constraining the mass and redshift evolution of the hydrostatic mass bias using the gas mass fraction in galaxy clusters

Raphaël Wicker (IAS)

Marian Douspis, Laura Salvati, Nabila Aghanim





One can also use $f_{gas} \propto rac{\Omega_b}{\Omega_m}$

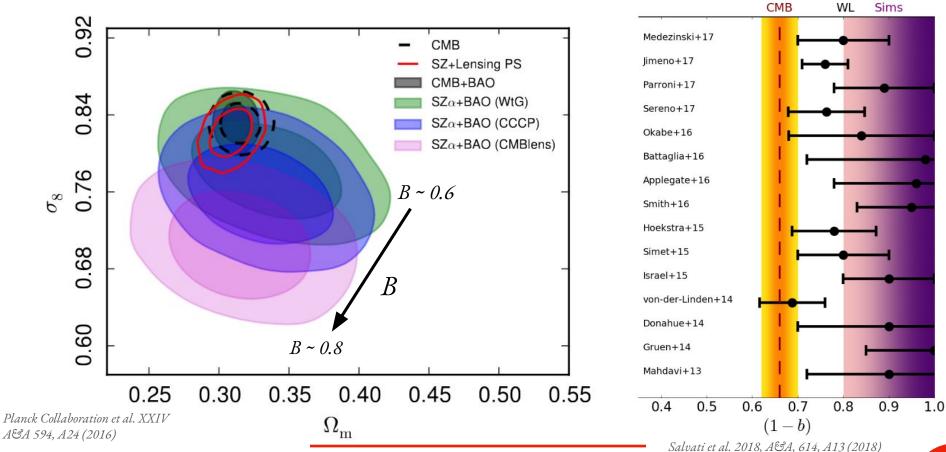


The gas mass fraction as a probe for the hydrostatic mass bias

Galaxy clusters can be used to constrain cosmological parameters.

• Number counts, clustering, sparsity etc...

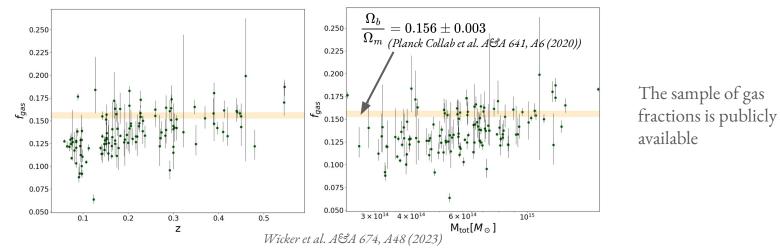
The gas mass fraction as a probe for the hydrostatic mass bias



Raphaël Wicker, mmUniverse 2023, Grenoble

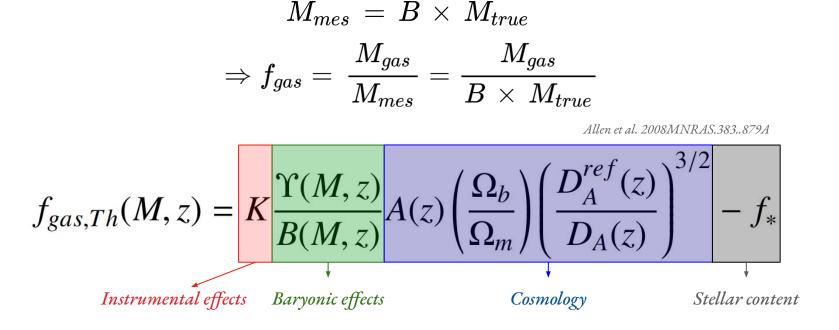
- *Purpose :* study the hydrostatic mass bias using cluster gas mass fraction data
- *In particular :* look for an evolution of B with M and z

Purpose: study the hydrostatic mass bias using cluster gas mass fraction data *In particular*: look for an evolution of B with M and z



120 clusters from the *Planck-ESZ sample*. Observed by *XMM-Newton*, data taken at R_{500} , with $z \in [0.059; 0.546]$, and $M_{500} \in [2.22; 17.5] \times 10^{14} M_{\odot}$. (Masses from *Lovisari et al 2020 ApJ 892 102*)

We model the observed gas fraction as follows :



$$B(M, z) = B_0 \left(\frac{M}{\langle M \rangle}\right)^{\uparrow} \left(\frac{1+z}{\langle 1+z \rangle}\right)^{\not}$$

$$B(M, z) = B_0 \left(\frac{M}{\langle M \rangle}\right)^{\uparrow} \left(\frac{1+z}{\langle 1+z \rangle}\right)^{\not}$$

=> 3 free parameters to describe the bias

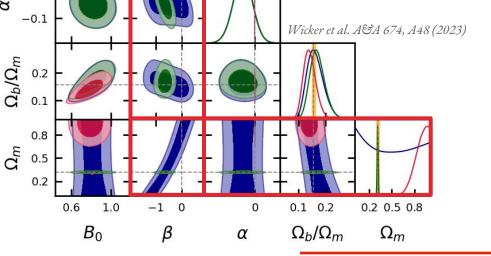
THE GAS MASS FRACTION AS A PROBE FOR THE HYDROSTATIC MASS BIAS

$$B(M, z) = B_0 \left(\frac{M}{\langle M \rangle}\right)^{\uparrow} \left(\frac{1+z}{\langle 1+z \rangle}\right)^{\not\beta}$$

$$Amplitude$$
Redshift dependence

=> 3 free parameters to describe the bias

We check how assuming a *constant* or *varying* bias impacts our cosmological constraints from gas fraction.



β

8

-1

0.0

Assuming a *Planck Collab. et al. (2020)* cosmology:

•
$$\beta = -0.64 \pm 0.17$$
 (in tension with 0)

 β and Ω_m are *degenerate*

$$\alpha = -0.057 \pm 0.038 \text{ (compatible with 0)}$$

•
$$B_0 = 0.828 \pm 0.039$$
 (compatible with 0.8)

THE GAS MASS FRACTION AS A PROBE FOR THE HYDROSTATIC MASS BIAS Varying B

Free Ω_m

Varying B

Constant B

 $\Omega_m = 0.315 \pm 0.007$

ByoPiC

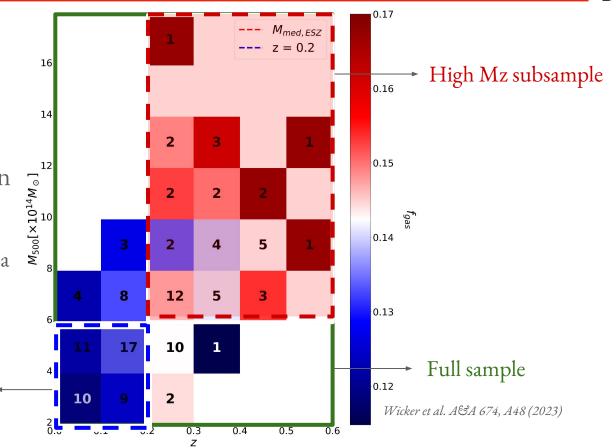
The gas mass fraction as a probe for the hydrostatic mass bias

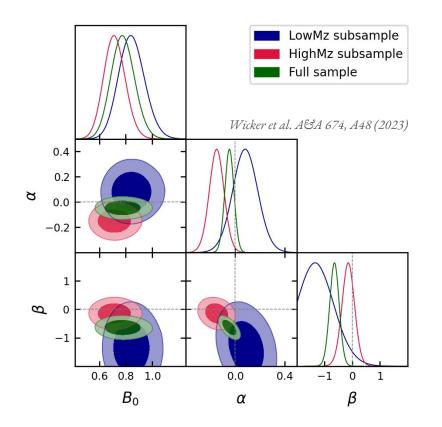
We seem to need an evolution of the bias. But does that depend on our sample ?

Studies of tSZ counts show a sample dependence

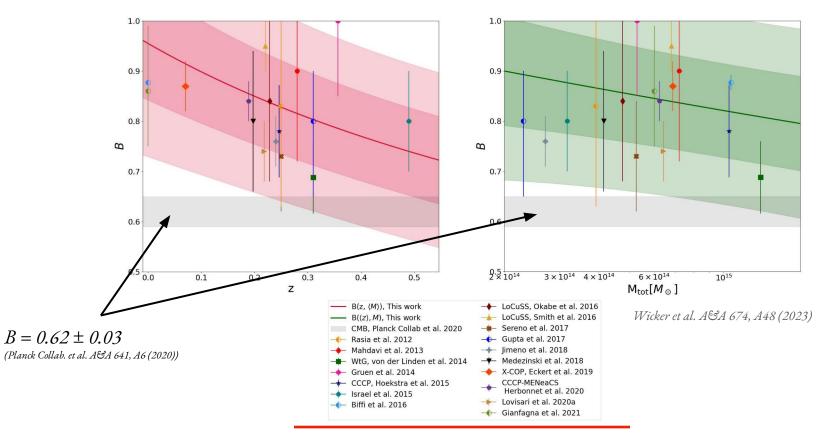
(see e.g. Salvati et al. A&A 626, A27 (2019), Laura Salvati's talk)

Low Mz subsample

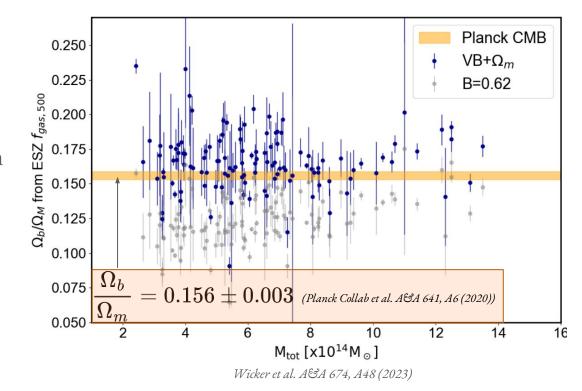




- All samples favor an amplitude $B_0 \sim 0.8$
- *Low Mz*: favors a strong redshift evolution, but compatible with no mass evolution
- *High Mz*: compatible with no redshift evolution, but favors a mass evolution
- *Full sample*: Strongly favors a redshift evolution, compatible with no mass evolution



If we assume
$$B=0.62$$
 from Planck
Collab. et al (2020), we then obtain
 $\Omega_b/\Omega_m = 0.108 \pm 0.018$
in tension with Planck
measurements.



• <u>Cluster gas fraction</u>

- Puts constraints on *B* (provided the cosmology is known)
- Limited cosmological sensitivity
- <u>Cluster counts :</u>
 - Strong sensitivity to cosmology
 - Major dependence on the prior on B

=> Could we combine these probes and benefit from both strengths ?

PRELIMINARY WORK !

COMBINING THE GAS FRACTION WITH NUMBER COUNTS

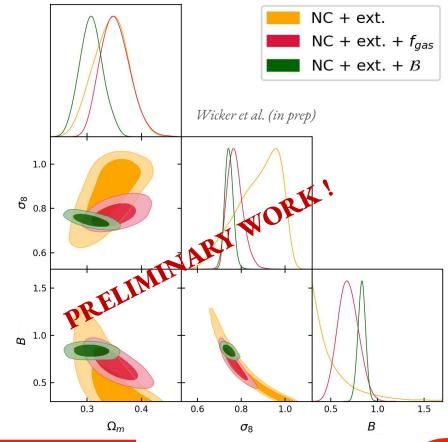
<u>Gas fractions :</u> Planck-ESZ sample
 <u>tSZ cluster counts :</u> PSZ2Cosmo sample

(Planck Collab. et al. 2016 XXVII)

<u>Baseline</u>: NC + (BAO + n_s + $\Omega_b h^2$)

Two different tests :

- Test baseline + prior on *B* (Herbonnet et al. 2020)
- Test baseline + f_{gas}

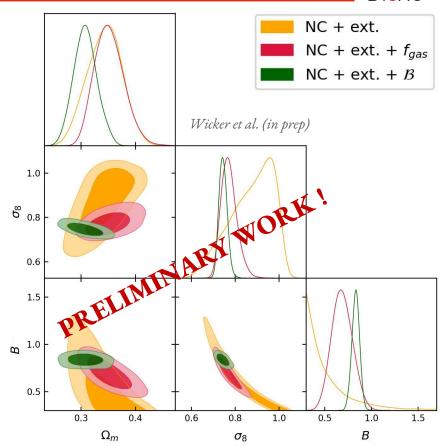


COMBINING THE GAS FRACTION WITH NUMBER COUNTS

fgas is less constraining than a prior on B
However breaks the degeneracy between B and σ₈.

<u>Strong caveats :</u>

- Non negligible impact of the priors
- Shallower M, z range of the *f*_{gas} sample
- Correlations between probes



- Gas fraction of clusters : good probe for the study of the hydrostatic mass bias, and its *evolution with mass and redshift*
- The evolution of B is degenerate with cosmological parameters
- A *low bias* (favoured by CMB+tSZ counts) is *not compatible with gas fraction data* and other direct measurements
- The trends of B are *highly sample-dependent*
- Combining number counts and gas fraction : *cosmological constraints from counts without using a prior on B* (**PRELIMINARY !**)

Thank you !

	Bias evolution study	Sample dependence of the results	Reference
Parameter	Prior	Prior	
B_0	=	U(0.3, 1.7)	-
$B(z_{CCCP}, M_{CCCP})$	N(0.84, 0.04)	_	1
f_*	$\mathcal{N}(0.015, 0.005)$	N(0.015, 0.005)	2
Υ_0	N(0.85, 0.03)	N(0.85, 0.03)	3
K	N (1, 0.1)	N (1, 0.1)	4
σ_{f}	$\mathcal{U}(0,1)$	$\mathcal{U}(0,1)$	_
h	$\mathcal{N}(0.674, 0.005)$	N(0.674, 0.005)	5
Ω_b/Ω_m	$\mathcal{U}(0.05, 0.3)$	N(0.156, 0.003)	5
Ω_m	$\mathcal{U}(0.01, 1)$ (CB , VB) or $\mathcal{N}(0.315, 0.007)$ (VB + Ω_m)	N(0.315, 0.007)	5
α	Fixed at 0 (CB) or $\mathcal{U}(-2, 2)$ (VB, VB + Ω_m)	$\mathcal{U}(-2,2)$	
β	Fixed at 0 (CB) or $\mathcal{U}(-2, 2)$ (VB, VB + Ω_m)	$\mathcal{U}(-2,2)$	

References. (1) Herbonnet et al. (2020); (2)Eckert et al. (2019); (3)Planelles et al. (2013); (4)Allen et al. (2008); (5)Planck Collaboration et al. (2020).

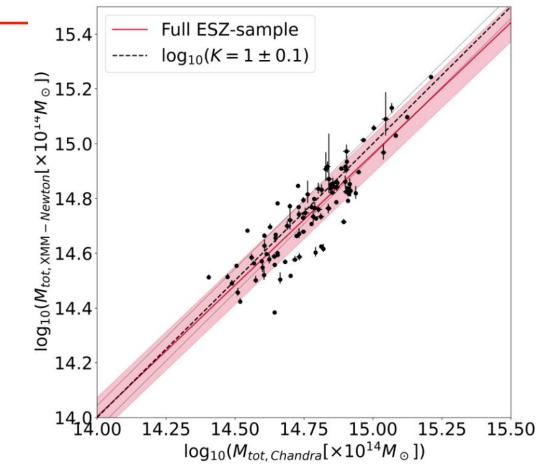
 $A(z) = \left(\frac{\theta_{500}^{re_J}}{\theta_{500}}\right)'' \simeq \left(\frac{H(z)D_A(z)}{[H(z)D_A(z)]^{ref}}\right)''$

Parameter	СВ	VB	$VB + \Omega_m$
B ₀	$\textbf{0.842} \pm \textbf{0.040}$	0.832 ± 0.041	$\textbf{0.828} \pm \textbf{0.039}$
α	0	-0.056 ± 0.037	-0.057 ± 0.038
β	0	$-0.43\substack{+0.61\\-0.37}$	-0.64 ± 0.18
Ω_b/Ω_m	$0.140^{+0.014}_{-0.020}$	$0.154^{+0.018}_{-0.026}$	$0.160\substack{+0.016\\-0.025}$
Ω_m	> 0.860	_	0.315 ± 0.007

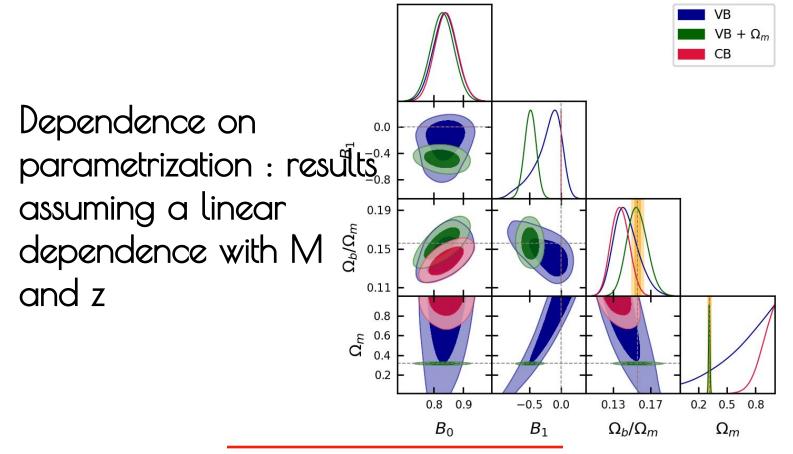
Parameter	LowMz subsample	HighMz subsample	Full sample
B ₀	$0.92^{+0.10}_{-0.11}$	$\textbf{0.767} \pm \textbf{0.086}$	$\textbf{0.840} \pm \textbf{0.095}$
α	0.09 ± 0.11	-0.149 ± 0.058	-0.057 ± 0.038
β	$-0.995\substack{+0.44\\-0.77}$	-0.08 ± 0.23	-0.64 ± 0.18

BYOPIC

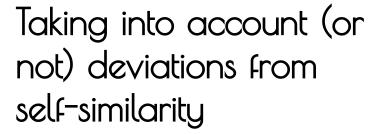
Calibration bias : M(XMM) vs M(Chandra)

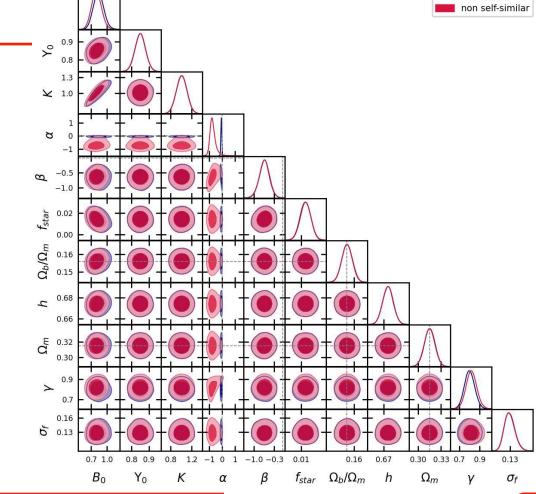


 $Rapha{\rm \ddot{e}l}\ Wicker,\ {\rm mm}Universe\ 2023,\ Grenoble$



Raphaël Wicker, mmUniverse 2023, Grenoble

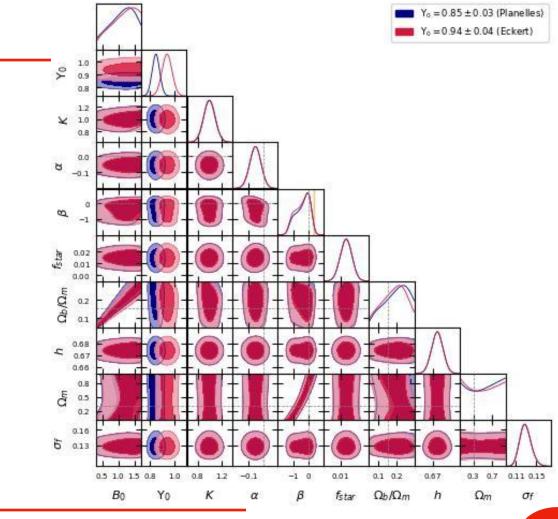




self-similar

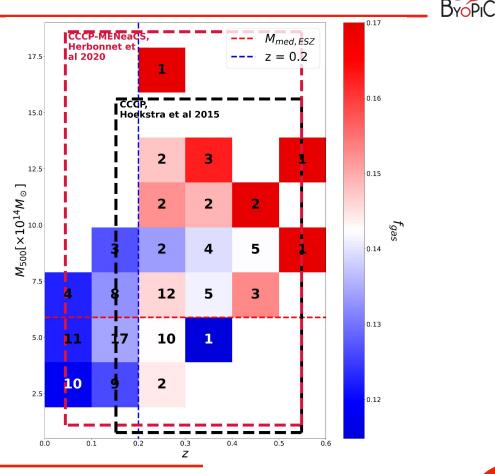
 $Rapha{\rm \ddot{e}l}\ Wicker,\ {\rm mm}Universe\ 2023,\ Grenoble$

Role of the depletion factor

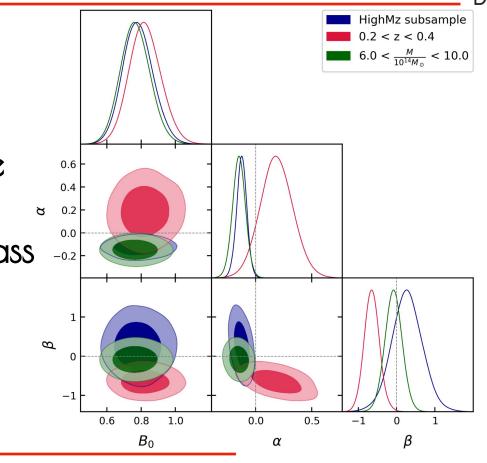


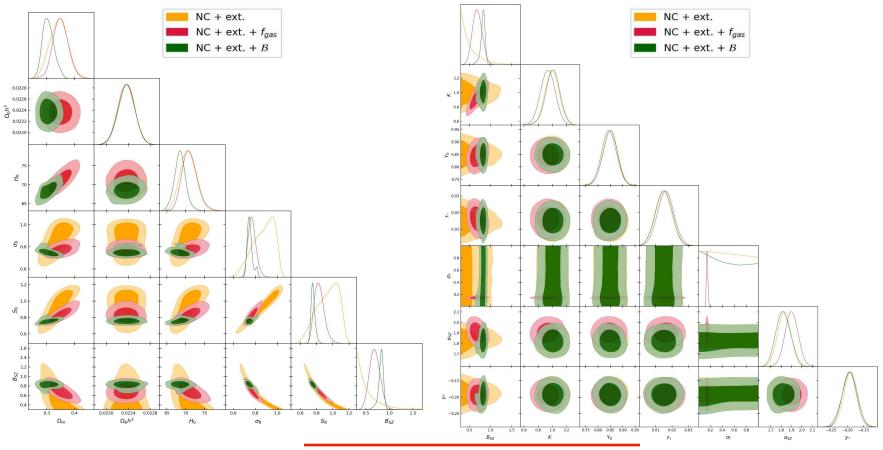
 $Rapha{\rm \ddot{e}l}\ Wicker,\ {\rm mm}Universe\ 2023,\ Grenoble$

Validity of our prior on Btot(z, M)



Looking into a possible effect from a redshift dependence of the mass distribution





Hydrostatic equilibrium assumption :

- In simulations :
 - Evidence for deviations (shocks, turbulence...)
 - Masses biased by ~15-20%
- In observations :
 - . Tested with Weak Lensing
 - . WL-to-HE mass ratio : ~15-20%
- ⇒ Introduction of the *hydrostatic mass bias* b. Most of the time, we use $B = (1-b) = M_{HE} / M_{true} \sim 0.8$