XLSSC 122 caught in the ACT of growing up

A somewhat mature cluster at z = 1.98

Joshiwa van Marrewijk,

Tony Mroczkowski, Luca Di Mascolo, Gergö Popping, and the ACT collaboration

So.. Why the excitement about high-z clusters?

Cluster Evolution

Credit: IllustrisTNG collaboration

So.. Why the excitement about high-z clusters?

Cosmology

Cosmology

What we want to learn:

A Galaxy Cluster: XLSSC 122

Imaged Residuals

A model reconstruction Corrected for the uvcoverage

O Cluster Members Contours are drawn at [-4.5, -3.5, -3.5, -1.5, 0, 1.5, 2.5, 3.5]- σ

The visibility plane in 1D

XLSSC 122

A classification based on pressure profiles is hard!

XLSSC 122: Pressure profiles

Adding additional constraining power

Adding additional constraining power

What does the cluster look like?

O Cluster Members Contours are drawn at [-4.5, -3.5, -3.5, -1.5, 0, 1.5, 2.5, 3.5]- σ

J. van Marrewijk et al. (In prep)

Searching for asymmetries:

Likelihood-weighted model

Synthesised beam

Residuals

Cleaned image reconstruction

A 2-component likelihood-weighted model reconstruction

- Equivalent to a $2.1\sigma 3.6\sigma$ detection!
- A mass ratio 1:2

We need multi-wavelength information

Dec [J2000]

Optical

We need multi-wavelength information

Dec [J2000]

- Optical
- Ηα

• We need multi-wavelength information

Dec [J2000]

- Optical
- Hα
- SZ

• We need multi-wavelength information

Dec [J2000]

- Optical
- Hα
- SZ
- X-ray

A (simplistic) X-ray + SZ view

• $\propto SZ_{flux} / \sqrt{SZ_{X-ray}} \propto k_b T$

• We need multi-wavelength information

 $\mathrm{Dec}\;[\mathrm{J}2000]$

- Optical
- Hα
- SZ
- X-ray

Interpretation

- Low density filament/group accreting into the cluster with a Mass ratio of ~1:2.
 - Could boost and heat up the ICM
- The cluster is still actively forming.
 - An offset between the BCG, the peak X-ray surface brightness, and the SZ-centroid.
 - ~4x larger dynamical mass

To summarise:

- We started with a single blob.
- ACA+ALMA alone weren't enough to classify the cluster based on it's pressure profile.
- However, by including ACT, we measured the pressure profile from the core till roughly the virial radius.
- The profile is consistent with a not a to extreme morphologically disturbed high-*z* system.

To summarise:

- We started with a single blob.
- ACA+ALMA alone weren't enough to classify the cluster based on it's pressure profile.
- However, by including ACT, we measured the pressure profile from the core till roughly the virial radius.
- The profile is consistent with a not a to extreme morphologically disturbed high-*z* system.

To do:

- O How did the BCG form?
- How is the entropy distributed throughout the ICM?
- Our How to derive a cluster mass?
 - Scaling Relations?
 - Dynamical Modeling?
 - Weak Lensing?
 - CMB Lensing?

Next steps...

XLSSC 122's mass