

Small scale CMB cosmological information

Marian Douspis

Adélie Gorce (McGill/IAS), Stéphane Ilić (IJCLab), Laura Salvati (IAS)

"Improved constraints on reionisation from CMB observations: A parameterisation of the kSZ effect", *Gorce, Ilic, Douspis, Aubert, Langer, A&A 2020, arXiv:2004.06616*

"Retrieving cosmological information from small-scale CMB foregrounds I. The thermal Sunyaev Zel'dovich effect", *Douspis, Salvati, Gorce, Aghanim, A&A 2022, arXiv:2109.03272*

"Retrieving cosmological information from small-scale CMB foregrounds II. The kinetic Sunyaev Zel'dovich effect", *Gorce, Douspis, Salvati, A&A 2022, arXiv:2202.08698*

SECONDARIES IN FREQUENCY MAPS

- tSZ/kSZ is hidden among many other signals
- tSZ/kSZ not negligible at small scales as Primordial CMB damped

Addison et al. 2012

RATIONALE

Can we exploit the full cosmological information of extragalactic components (tSZ, kSZ, CIB, …) in CMB analyses ?

Yes by using coherent modelling and coherent analysis !

Douspis et al 2006

$$\begin{array}{l} \text{SPT analysis} \\ C_{\ell}^{obs} = C_{\ell}^{CMB}(\Theta, xe = tanh) + A^{tSZ}C_{\ell}^{temp-t} + A^{kSZ}C_{\ell}^{temp-k} + \ldots \\ \uparrow \\ \text{Cosmology} \end{array}$$

RATIONALE

Can we exploit the full cosmological information of extragalactic components (tSZ, kSZ, CIB, ...) in CMB analyses ?

Yes by using coherent modelling and coherent analysis !

Douspis et al 2006

Replace in SPT analysis

TSZ POWER SPECTRUM FROM HALO MODEL

Cosmology

Selection function

Given by experiment and observing strategy From simulations or analytical formulae [Planck 2013,15...]

See also talk of Stefano Gallo

Scaling Relation

Needed to relate the observable (flux, size) to the mass and redshift. Given by comparison HM with simulations or WL measurements [Planck 2013., Nagai et al.,...]

$$E^{-\beta}(z) \left[\frac{D_A^2(z) Y_{500}}{10^{-4} \,\mathrm{Mpc}^2} \right] = \mathbf{Y}^{\star} \left[\frac{h}{0.7} \right]^{-2+\alpha} \left[\frac{(1-b) M_{500}}{6 \cdot 10^{14} M_{\odot}} \right]^{\mathbf{0}}$$

See also talk of Gaspard Aymerich on scaling and Theo Lebeau and Miren Muñoz Echeverría on bias

Mass function

Number of halos in bins of mass and redshift. From numerical simulations, known 10% scatter between teams [Tinker et al., Watson et al., Despali et al.]

$$\frac{dN(M_{500}, z)}{dM_{500}} = f(\sigma) \frac{\rho_m(z=0)}{M_{500}} \frac{d\ln\sigma^{-1}}{dM_{500}}$$
$$f(\sigma) = A \left[1 + \left(\frac{\sigma}{b}\right)^{-a} \right] \exp\left(-\frac{c}{\sigma^2}\right)$$
$$\sigma \ needs \ \int P(k)$$

Profile

Describes the spatial distribution of the hot gas. Assume Universal pressure profile, the GNFW [Nagai et al., Arnaud et al., Planck 2014]

See also talk of Corentin Hanser

IAS We delay of period

The kinetic Sunyaev Zel'dovich effect

Information on reionisation history

Information on reionisation morphology

Gorce+2020, see also McQuinn+2005; Iliev+2007; Battaglia+2013; Mesinger+2012, Park+2013, Chen+2022...

CURRENT CONSTRAINTS

- CMB experiments constrain kSZ amplitude and propagate to reionisation:
 - $D^{\text{late-time}}(l=3000) \propto \tau^{0.44}$ (Shaw+2012)
 - D^{patchy} (I=3000) $\propto z_{re}$ and $\Delta z^{0.51}$ (Battaglia+2013)
- Most recent constraints: SPT+Planck
 - $D_{3000} = 1.1 + 1.0 - 0.7 \,\mu\text{K2}$
 - \bigcirc $\Lambda z = 1.1 + 1.6/-0.7$

See also talk of Srinivasan Raghunathan for prospects

MARIAN DOUSPIS - MMUNIV - 2023

CURRENT CONSTRAINTS

Issues in the way EoR is currently modelled in CMB data analysis:

- Use of templates although amplitude and shape depend on reionisation (e.g. McQuinn+2006, Iliev+2007, Mesinger+2012)
- Scaling relations between kSZ amplitude and EoR parameters are largely dependent on the simulations used (*Park+2013*)
- Different xe(z) used for large- and small-scale modelling
- \longrightarrow Inconsistent hypotheses: Motivation to develop a semi-analytic derivation of the kSZ power based on cosmology and EoR parameters

DERIVING THE KSZ POWER SPECTRUM

The power spectrum of free electrons $P_{EE}(K,Z)$

Early times: power-law
$$P_{ee}(k, z) = \frac{\alpha_0 x_e(z)^{-1/5}}{1 + [k/\kappa]^3 x_e(z)}$$

 $z = 10.1, x_{HII} = 0.0117$

 \bullet α_0 : constant amplitude on large scales $\leftrightarrow \rightarrow$ variance of the field

• κ: drop-off frequency \leftrightarrow minimal size of ionised regions

Gorce+, A&A 2020

Fitting formula to the spectra of simulations

Applied to three types of simulations:

- rsage: Three different models of the escape fraction (Seiler+2019)
- 21CMFAST: Semi-numerical simulations of reionisation (Mesinger+2007, 2011, Park+2018)
- EMMA: r-hydro simulations with ≠ star formation (Aubert+2015, Chardin+2019)
 - \rightarrow Robust to different physics

PATCHY KSZ FOR VARIOUS SIMULATIONS

12

PHYSICAL INTERPRETATION: K VS. *C*MAX & BUBBLE SIZE

 $z = 10.1, x_{HII} = 0.0117$

PHYSICAL INTERPRETATION: K VS. *C*MAX & BUBBLE SIZE

MARIAN DOUSPIS - MMUNIV - 2023

Physical interpretation: A₀ VS. Amplitude

Physical Interpretation: A₀ vs. Amplitude

CURRENT HIGH-L ANALYSES

There is information about reionisation in the kSZ spectrum...

... but it is not used in current analyses, resulting in imprecise constraints

- Proposed solution:
 - Replace templates by analytic derivations of the SZ spectra to retrieve the cosmological information enclosed in the foregrounds
 - For the tSZ spectrum \rightarrow *Douspis, Salvati, Gorce & Aghanim 2022*
 - For the kSZ spectrum \rightarrow *Gorce, Douspis & Salvati 2022*
- But the computation is expensive (one min per I...)

Building an SZ emulator

- tSZ and kSZ too long to compute in MCMC
- Training Random forest with random values of 5+3/4 params (15000 models) on 15 l-values of the Cls (l=10 to l=11000) [scikit-learn]
- RF Score > 96%

 \pm 2% while observation errors are ~20% Asbolute 0.02 μK^2 More than 100 times faster to compute

Paper I: Douspis et al. 2022

Paper II: Gorce et al. 2022

See also talk of Boris Bolliet

Results on SPT data: cosmology

Effect of cosmological information of tSZ

RESULTS ON SPT DATA: COSMOLOGY

Adding more information

Adding Planck tSZ spectrum shifts parameters to more usual values of $(\Omega_M, \ \sigma_8)$ But do not improve drastically the error bars

Adding Planck tSZ spectrum and prior on the mass bias reduces by factor 2 error bars

> CCCP: Hoekstra et al. $b=0.21\pm0.09$

PR4 ymap: Tanimura et al. 2021 Douspis et al. 2022

Results on SPT data: Reionisation

- Planck 2018 priors on $\Omega_b h^2$, $\Omega_c h^2$, θ_{MC} , ns
- Flat priors on other parameters (A_s, reion)
 - Clean and consistent measurement of the tSZ and kSZ amplitudes
 - Breaks the degeneracy

22

Results on SPT data: Free cosmology

Gorce, Douspis, Salvati 2022

Results on SPT data: Free cosmology

Results on epoch of reionisation: x_e

SPT data favour a different cosmology than Planck, including earlier reionisation: $\tau = 0.062 \pm 0.012 (1\sigma)$ $z_{re} = 7.9 \pm 1.1 (1\sigma)$

Gorce, Douspis, Salvati 2022

CONCLUSIONS

- First attempt to bring full information of high ell components (focusing on tSZ and kSZ)
- Already with SPT (and ACT), leveraging the cosmological information in foregrounds leads to
 - Stronger constraints on cosm. param.
 - Oleaner measurements
 - Self-consistent constraints on reionisation
 - ... but mostly with upcoming releases:
 - ACT/SPT/SO/CMB-S4

PROSPECTIVES

- Moving for a full all-ell cosmological analysis with coherent foregrounds extracting all cosmological information from all CMB data (PLANCK+ACT+SPT: BATMAN project)
 - Generalised Halo model / emulator to CIB, CIBxSZ cross correlation, …, for Cobaya module
 - Add coherently Cluster counts and baryon fraction

See also talk of Raphael Wicker

- Joint constraints of kSZ with other data sets
- Emulator 100 times faster, allows to make many tests: tSZ and kSZ, available with other products:

https://szdb.osups.universite-paris-saclay.fr

Thank you

Better Accuracy and robusTness for Mass Assessment of Neutrinos

MARIAN DOUSPIS - MMUNIV - 2023