Enhancing CMB+kSZ Power Spectrum Measurements by Removing CIB and tSZ Contamination with LSS

Kristen Surrao Grenoble mm Universe, June 2023 Work with Ola Kusiak and Colin Hill

Motivation: measuring kSZ is challenging. Can we improve it by removing tSZ and CIB?

Idea: Use the external LSS data that is correlated with both CIB and tSZ to remove those contaminants to enhance CMB+kSZ measurements using ILC methods

Key: Two-point correlation function of LSS with CMB + kSZ vanishes

• electron velocity as likely to be positive as to be negative, thus kSZ-LSS vanishes

Modeling choices

Modeling: Overview of Sky Models

Analytically model microwave sky as primary lensed **CMB**, **kSZ**, **tSZ**, **CIB**, and **radio** source signals, as well as **detector and atmospheric noise** for Simons Observatory (SO) and Planck-like experiment at 8 frequencies from 93 to 353 GHz.

Computed in the halo model with class_sz (Boris Bolliet)

Modeling: *unWISE* Galaxies

- unWISE galaxy catalog (Krolewski+ 2020):
 - Based on WISE and NEOWISE
 - Over 500 million galaxies on the full sky
 - \circ 3 subsamples: blue (z=0.6), green (z=1.1), and red (z=1.5)
 - Coarse dn/dz via cross-correlation with spectroscopic surveys

Redshift Distribution

Number density of galaxies unWISE δ_{z} $\bar{n}_g \, [\mathrm{deg}^{-2}]$ \overline{z} blue 0.60.33409 1.1 0.41846 green 1.5red 0.4144

Galaxy overdensity map (unWISE blue)

We model *unWISE* halo occupation distribution (HOD) = galaxy clustering model based on <u>Kusiak+ 2022</u>

unWISE correlates with CIB and tSZ fields

CIB x unWISE:

Compton-y x unWISE:

unWISE

- great tracer of the CIB
- also partially traces tSZ

Internal Linear Combination (ILC): Theory

Standard ILC

Internal Linear Combination (ILC)–standard method to construct a map of the signal of interest and optionally deproject (=remove) some other contaminant components

$$\hat{T}^{\rm ILC}_{\ell m} = \sum_{i} w^{i}_{\ell} T^{i}_{\ell m}$$
temperature map at ith frequency

Minimization subject to one constraint:

• Minimize variance

Frequency-frequency covariance matrix from data

$$\sigma_{\hat{T}_{\ell m}^{\mathrm{ILC}} \hat{T}_{\ell m}^{\mathrm{ILC}}}^{2} = \sum_{i,j} w_{\ell}^{i} w_{\ell}^{j} \left(\hat{R}_{\ell} \right)_{ij}$$

• Unit response to signal of interest

$$\sum_{i} w_{\ell}^{i} a_{i} = 1$$

SED of signal of interest

Solution for the weights:

$$w_{\ell}^{i} = \frac{\left(\hat{R}_{\ell}^{-1}\right)_{ij} a_{j}}{\left(\hat{R}_{\ell}^{-1}\right)_{km} a_{k} a_{m}}$$

Constrained ILC

Minimization subject to two constraints:

• Minimize variance

 $\sigma_{\hat{T}_{\ell m}^{\mathrm{ILC}}\hat{T}_{\ell m}^{\mathrm{ILC}}}^{2} = \sum_{i,j} w_{\ell}^{i} w_{\ell}^{j} \left(\hat{R}_{\ell}\right)_{ij}$

- Unit response to signal of interest
 - $\sum_{i} w_{\ell}^{i} a_{i} = 1$
- <u>Deproject one</u> contaminant

 $\sum_{i} w_{\ell}^{i} b_{i} = 0$ SED of component to deproject

Solution for the weights:

$$w_{\ell}^{j} = \frac{\left(b_{k}(\hat{R}_{\ell}^{-1})_{kl}b_{l}\right)a_{i}(\hat{R}_{\ell}^{-1})_{ij} - \left(a_{k}(\hat{R}_{\ell}^{-1})_{kl}b_{l}\right)b_{i}(\hat{R}_{\ell}^{-1})_{ij}}{\left(a_{k}(\hat{R}_{\ell}^{-1})_{kl}a_{l}\right)\left(b_{m}(\hat{R}_{\ell}^{-1})_{mn}b_{n}\right) - \left(a_{k}(\hat{R}_{\ell}^{-1})_{kl}b_{l}\right)^{2}}$$

- Solution can be generalized to <u>N</u>
 <u>deprojected components</u>
- Generally, (except tSZ) we don't know the exact SED of the contaminant
- No free lunch!
 - deprojecting/adding a constraint increases the noise of the final map

Standard and Constrained ILC Results

New Methods

Overview of New Methods

- 1. ILC with tracers as additional input "frequency" maps
- 2. de-CIB
- 3. ILC requiring tracers to have zero correlation with the cleaned map

Overview of New Methods

- 1. ILC with tracers as additional input "frequency" maps
- 2. de-CIB
- 3. ILC requiring tracers to have zero correlation with the cleaned map

ILC with Tracers as Additional Input "Frequency" Maps

• Use the fact that the CMB and kSZ fields have zero "response" in the tracer maps

$$\hat{T}_{\ell m}^{\text{ILC}} = \sum_{i=1}^{N} w_{\ell}^{i} T_{\ell m}^{i} + \sum_{i=1}^{N_{g}} w_{\ell}^{N+i} g_{i,\ell m}$$

ILC with Tracers as Additional Input "Frequency" Maps

• Use the fact that the CMB and kSZ fields have zero "response" in the tracer maps

$$\hat{T}_{\ell m}^{\text{ILC}} = \sum_{i=1}^{N} w_{\ell}^{i} T_{\ell m}^{i} + \sum_{i=1}^{N_{g}} w_{\ell}^{N+i} g_{i,\ell m}$$
Spectral response vector for signal of interest
$$\mathbf{a} \leftarrow \mathbf{a} + \underbrace{[0, ..., 0]}_{N_{g}} \longrightarrow \sum_{i=1}^{N+N_{g}} w_{\ell}^{i} a_{i} = \sum_{i=1}^{N} w_{\ell}^{i} a_{i} = 1$$

ILC with Tracers as Additional Input "Frequency" Maps

• Use the fact that the CMB and kSZ fields have zero "response" in the tracer maps

$$\hat{T}_{\ell m}^{\text{ILC}} = \sum_{i=1}^{N} w_{\ell}^{i} T_{\ell m}^{i} + \sum_{i=1}^{N} w_{\ell}^{N+i} g_{i,\ell m}$$
Spectral response vector for signal of interest
$$\boldsymbol{a} \leftarrow \boldsymbol{a} + \underbrace{[0, ..., 0]}_{N_{g}} \longrightarrow \sum_{i=1}^{N+N_{g}} w_{\ell}^{i} a_{i} = \sum_{i=1}^{N} w_{\ell}^{i} a_{i} = 1$$

Standard ILC solution with modified covariance

$$w_{\ell}^{i} = \frac{\left(\hat{R}_{\ell}^{-1}\right)'_{ij}a_{j}}{\left(\hat{R}_{\ell}^{-1}\right)'_{km}a_{k}a_{m}}$$

$$\left(\hat{R}^{\ell}\right)' = \begin{bmatrix} \hat{R}^{\ell} & X_{\ell} \\ X_{\ell}^{T} & G_{\ell} \end{bmatrix}$$

ILC with Tracers as Additional Input "Frequency" Maps: Results

Overview of New Methods

- 1. ILC with tracers as additional input "frequency" maps
- 2. de-CIB
- 3. ILC requiring tracers to have zero correlation with the cleaned map

de-CIB

1. Find the linear combination of LSS tracer samples most highly correlated with CIB at ith frequency: $i = \frac{1}{2} \int_{a}^{a} \frac{1}{2} \int$

Optimal combination of Different tracers, e.g. tracers at ith frequency *unWISE* blue, green, red

de-CIB

1. Find the linear combination of LSS tracer samples most highly correlated with CIB at ith frequency: $i = \frac{1}{2} - \frac{1}{$

Optimal combination of Different tracers, e.g. tracers at ith frequency *unWISE* blue, green, red

2. Starting from an ILC map, subtract the fraction of tracers that's contained in the CIB at each frequency:

$$T_{\ell m}^{\text{clean}} = \sum_{i} w_{\ell}^{i} (T_{\ell m}^{i}) - f_{\ell}^{i} g_{\ell m}^{i})$$

de-CIB

1. Find the linear combination of LSS tracer samples most highly correlated with CIB at ith frequency: $i = \frac{1}{2} \int_{a}^{a} \frac{1}{2} \int$

Optimal combination of Different tracers, e.g. tracers at ith frequency *unWISE* blue, green, red

2. Starting from an ILC map, subtract the fraction of tracers that's contained in the CIB at each frequency:

$$T_{\ell m}^{\text{clean}} = \sum_{i} \underbrace{w_{\ell}^{i}(T_{\ell m}^{i})}_{i} - f_{\ell}^{i}g_{\ell m}^{i})$$

The fraction of tracers contained in the CIB at each frequency (from delensing: minimize the variance of the final map) is

$$f_{\ell}^{i} \equiv \frac{C_{\ell}^{\text{CIB}_{i},g^{i}}}{C_{\ell}^{g^{i},g^{i}}} = \frac{\sum_{a} c_{a,\ell}^{i} C_{\ell}^{\text{CIB}_{i},g_{a}}}{\sum_{a,b} c_{a,\ell}^{i} c_{b,\ell}^{i} C_{\ell}^{g_{a}g_{b}}}$$

Overview of New Methods

- 1. ILC with tracers as additional input "frequency" maps
- 2. de-CIB
- 3. ILC requiring tracers to have zero correlation with the cleaned map

ILC with Zero-Tracer-Correlation Constraint

Start from an ILC, and explicitly require the output map to have zero cross-correlation with the tracer map:

$$\langle T_{\ell m}^{\rm ILC} g_{\ell m} \rangle = 0 \Longleftrightarrow \sum_{i} w_{\ell}^{i} \langle T_{\ell m}^{i} g_{\ell m} \rangle = 0$$

ILC with Zero-Tracer-Correlation Constraint

Start from an ILC, and explicitly require the output map to have zero cross-correlation with the tracer map:

$$\langle T^{\rm ILC}_{\ell m} g_{\ell m} \rangle = 0 \Longleftrightarrow \sum_{i} w^{i}_{\ell} \langle T^{i}_{\ell m} g_{\ell m} \rangle = 0$$
Def. $c^{\ell}_{i} \equiv \langle T^{i}_{\ell m} g_{\ell m} \rangle = C^{ig}_{\ell}$

$$\sum_{i} w^{i}_{\ell} c^{\ell}_{i} = 0$$

similar to usual constrained ILC!

ILC with Zero-Tracer-Correlation Constraint

Start from an ILC, and explicitly require the output map to have zero cross-correlation with the tracer map:

similar to usual constrained ILC!

- This is a **spatial** deprojection instead of the usual **spectral** deprojection
- Can be applied to a (spectral) tSZ-deprojected ILC or can spatially deproject both tSZ and CIB, i.e., using

$$b_i^{\ell} \equiv \langle T_{\ell m}^i g_{\ell m}^{\text{tSZ}} \rangle \text{ and } c_i^{\ell} \equiv \langle T_{\ell m}^i g_{\ell m}^{\text{CIB}} \rangle$$

ILC with Zero-Tracer-Correlation Constraint: Results

Summary

- Three new methods to remove CIB and tSZ contamination using LSS tracers to enhance kSZ+CMB
- Methods have various trade-offs depending on metrics one cares about
- Theoretical models provided for forecasting purposes but methods can be applied to data
- Results here are just for *unWISE*—can actually combine several tracers (DES, BOSS/eBOSS, 2MASS, or CMB/galaxy lensing)!
- Future surveys (LSST, DESI, Euclid) will have more galaxies and give even better results
- Future directions: test on sims and apply to data (ACT + *unWISE*)

arXiv:2303.08121

Backup Slides

Modeling: CIB

Two models based on the standard Shang et al. CIB model:

- Planck 2014 paper (P14)
- Herschel 2013 paper (H13); also in WebSky simulations
 H13

P14

Parameter	Parameter description	Value	
L_0	Normalization of L–M relation	$7.0 \times 10^{-8} ~{\rm Jy} ~{\rm Mpc}^2/M_\odot/{\rm Hz}$	
α^{CIB}	Redshift evolution of dust temperature	0.36	
T_0	Dust temperature at $z = 0$	24.4 K	
β^{CIB}	Emissivity index of SED	1.75	
γ^{CIB}	Power law index of SED at high frequency	1.7	
$\log_{10}(M_{\rm eff}^{\rm CIB}/M_{\odot})$	Most efficient halo mass	12.6	
$\log_{10}(M_{\min}^{\text{CIB}}/M_{\odot})$	Minimum halo mass to host a galaxy	10	
σ_{L-M}^2	Distribution of of halo masses sourcing CIB emission	0.5	
δ_{CIB}	Redshift evolution of $L-M$ relation	3.6	
z_p	Plateau redshift of $L-M$ relation	10 ¹⁰⁰	

Different values of the Shang et al. CIB parameters

ILC w/ 2 Zero-Tracer-Corr Constraints (3 constraints): Results

SNR

	H13 CIB Model	P14 CIB Model	H13 CIB Model	P14 CIB Model
	(using unWISE)	(using unWISE)	(future LSS survey)	(future LSS survey)
Standard ILC	115.32	115.25	115.32	115.25
Standard ILC (no CIB or tSZ)*	202.74	202.74	202.74	202.74
ILC with g freq maps	116.80	116.75	120.04	118.37
de-(CIB+tSZ)	116.49	116.69	117.90	118.11
ILC with constraint on $g^{ m CIB}$	110.67	95.43	110.58	96.65
ILC (deproj tSZ)	19.43	25.17	19.43	25.17
ILC (deproj tSZ, no CIB) $*$	62.21	62.21	62.21	62.21
de-CIB (deproj tSZ)	23.22	25.52	29.25	25.93
ILC (deproj tSZ and CIB)	5.94	7.33	5.94	7.33
ILC with constraint on g^{CIB}	6.36	8.47	6.34	8.43
(deproj tSZ)				
ILC with constraints on g^{CIB} and g^{tSZ}	18.74	6.66	19.72	6.60

unWISE vs. Future LSS Surveys

Ratios

