Constraining Millimeter Dust Emission in Nearby Galaxies with NIKA2 Case of NGC2146 and NGC2976

Golshan Ejlali (Ph.D. student at IPM, Iran) Co-authors: F. Tabatabaei, H. Roussel, S. Madden, C. Kramer, F. Galliano, M. S. Smith, A. Nersesian, S. Katsioli, X. Desert, A. Jones, M. Xilouris, A. Hughes + the IMEGIN consortium + the NIKA2 consortium

Outline

- 1. About IMEGIN
- 2. Get to know the galaxies!
- 3. NIKA2 observations
- 4. SED modeling
 - a. Global SED modeling
 - b. Resolved SED modeling
- 5. Gas in NGC2976
- 6. NIKA2 observation as SFR calibrator

IMEGIN

(Interpreting the Millimeter Emission of Galaxies with IRAM and NIKA2)

- A Guaranteed time large project proposed to NIKA2 collaboration (Perotto+2020) PI: Suzanne Madden
- About 200 observing hours on the IRAM 30m telescope
- A sample of 20 galaxies with UV-radio complementary data

Goals:

- Study the emission at mm wavelengths and the physical processes causing it
- Study the relation of these processes to star formation
- To constrain galaxy SED spatially and study evolution of the dust emissivity and gas-to-dust ratio
- → Check out talks from L. Pantoni, A. Nersesian, S. Katsioli
- Preliminary results, soon to be published in Ejlali+2023.

NGC327	NGC3627	
NGC628	NGC3938	
NGC891	NGC4254	
NGC925	NGC4321	
NGC2146	NGC4536	
NGC2841	NGC5194	
NGC2976	NGC6946	
NGC3184	NGC7331	
NGC3198	NGC3521	

NGC2146

- Spiral galaxy, inclined **57**°
- Distance **18 Mpc**
- Apparent size **6'x3.4'**
- Physical size equivalent to a **6**" pixel ~**500pc**
- Starburst galaxy, SFR=34±11 M_o/yr (Nersesian+2019)

NGC2146 observed with WIYN0.9m telescope (Cheng+1997) Red(top) and Hα (bottom)

NGC2976

- Dwarf galaxy, inclined **65**°
- Distance **3.5 Mpc**
- Apparent size **5.9'x2.7'**
- Physical size equivalent to a 6" pixel ~100pc
- Star forming galaxy, SFR=0.13±0.02
 M_o/yr (Nersesian+2019)
- Metallicity **12+log(O/H)=8.39±0.03**

NGC2976, in filters Red (top) observed with (Dale+2009), and Hα (bottom) observed with KPNO2.1m (SINGS2007)

NIKA2 observations

NIKA2 observations of NGC2146 (top) and NGC2976 (bottom) at 1mm (right) and 2mm (left)

NIKA2 observations

- Observed time:
 - NGC2146: 5.0 hours
 - NGC2976: 5.3 hours
- Resolution: (Perotto+2020)
 - At **1mm:** 12 arcsec
 - At **2mm**: 18 arcsec
- Physical scale of 18" beam:
 - NGC2146: **1.6 kpc**
 - NGC2976: **0.3 kpc**
- Reduced with *Scanam_NIKA* pipeline by Helene Roussel

CO contamination

Emission in millimeter consists of:

- 1. Continuum thermal emission from dust
- 2. Continuum thermale free-free emission
- 3. Continuum non-thermal synchrotron emission
- 4. Line emission from CO(2-1)

• CO(2-1) data from HERACLES survey (Leroy+2009)

CO contamination

Percentage of contribution of CO line emission in NIKA2 1mm observed maps in NGC2146 (top) and NGC2976 (bottom)

Emission in millimeter consists of:

- 1. Continuum thermal emission from dust
- 2. Continuum thermale free-free emission
- 3. Continuum non-thermal synchrotron emission
- 4. Line emission from CO(2-1)
- Contribution of CO in integrated flux:
 - NGC2146: **26%**
 - NGC2976: **7%**

Emission in millimeter consists of:

- 1. Continuum thermal emission from dust MBB model $\kappa_0 (v/v_0)^{\beta} M/D^2 B(v,T)$
- 2. Continuum thermale free-free emission

 $A_1(v/v_0)^{-0.1}$

3. Continuum non-thermal synchrotron emission

4. Line emission from CO(2-1) : subtracted

Analytical model

$$S_{v} = \kappa_{0} (v/v_{0})^{\beta} M/D^{2} B(v,T) + A_{1} (v/v_{0})^{-0.1} + A_{2} (v/v_{0})^{-\alpha}$$

6 free parameters:

- 1. Dust mass M_{dust},
- 2. Dust temperature T_{dust},
- 3. Dust emissivity index β ,
- 4. Contribution of free-free emission A_1 or $f_{th} = A_1/S(21cm)$,
- 5. Contribution of synchrotron emission A_2 ,
- 6. Synchrotron spectral index α_{syn}

Complementary data

$10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{-3} 10^{-2} 10^{-1} 10^{-1} 10^{0} 10^{-3} 10^{-2} 10^{-1} $	telescope	wavelength
	Herschel- PACS	70-100-160 µm
SPIRE 500µm Fadio 18cm Fadio 21cm CO(2-1)	Herschel- SPIRE	250-350-500 μm
10 ⁻³ 10 ⁻² 10 ⁻¹ 10 ⁻² 10 ⁻¹ 10 ⁻² 10 ⁻¹ 10 ⁻² PACS 70µm PACS 100µm PACS 160µm SPIRE 250µm SPIRE 350µm SPIRE 350µm	Planck	1.38 mm
// 🧭 🍼 🍼	NIKA2	1.15-2 mm
10 ⁻² 2 × 10 ⁻³ 10 ⁻⁵ 10 ⁻¹ 10 ⁰ 10 ¹ 10 ² SPIRE 500µm radio 18cm radio 21cm 0 0 0 0 10 ²	Effelsberg	6.2 cm
	WSRT	18-21 cm

Fitting process

- Fitting method: Bayesian MCMC
- We account for transmission functions of each instrument.

Step 1: Global SED modelling

- Integration radius:
 - NGC2146: 260 arcsec
 - NGC2976: **220 arcsec**

Step 2: Resolved SED modelling

Global SED modelling

Step 1: Global SED modelling

Step 2: Resolved SED modelling

- Resolution 18 arcsec
 - We discard SPIRE 350 and 500 μm and Planck 1.3mm
- All maps were convolved to same resolution and geometry.
- We fix α_{syn}
 - 5 free parameters

 $\mathbf{M}_{\mathrm{dust}}$, $\mathbf{T}_{\mathrm{dust}}$, β , $\mathbf{f}_{\mathrm{th}}\!\!=\!\!\mathbf{A}_{\!_{1}}\!/\mathbf{S}(\!\mathbf{21}\mathrm{cm})$

Modelled parameters for NGC2146 (top) and NGC2976 (bottom) *P*

Resolved SED modelling

Dust temperature vs. emissivity index

Dust temperature vs. SFR

SFR computed from Spitzer MIPS 24µm

T-SFR relation for NGC2146 (left) and NGC2976 (right)

Gas in NGC2976

- Atomic gas: THINGS survey (Walter+2008)
- Molecular gas: from CO data (Leroy+2008)

Dust-to-gas ratio

Role of dust in formation of molecular gas

Relation of different gas components with dust

Role of dust in formation of molecular gas

NIKA2 as SFR calibrator

Strong correlation of emission at 1 and 2 mm with SFR for NGC2146. Maps smoothed to beam size pixels, to avoid internal correlation between pixels.

NIKA2 as SFR calibrator

24

Strong correlation of emission at 1 and 2 mm with SFR for NGC2976. Maps smoothed to beam size pixels, to avoid internal correlation between pixels.

NIKA2 as gas calibrator

Strong correlation of emission at 1 and 2 mm with total gas mass.

Better linearity in relation of gas: correlation of NIKA2 vs. SFR is rooted in correlation of NIKA2 vs. gas.

Relation of emission of NGC2976 at 1 and 2 mm with SFR (top) and gas mass (bottom)

Summary of important points

- Up to **40%** of emission (per pixel) at **1mm** is caused by CO, when observing nearby galaxies.
- Dust temperature is highly correlated with SFR, showing role of energetic photons in heating of dust.
- DGR is inversely correlated with dust temperature, showing the role of energetic radiation field in destruction of dust.
- In dust-rich regions, fraction of molecular gas is more than atomic gas.
- NIKA2 observation at millimeter wavelengths shows strong correlation with SFR, hence can be used as a SFR calibrator.
- In NGC2976, we see strong linear correlation between emission at **1** and **2mm** and total gas mass, so NIKA2 can be used as a calibrator of total gas mass as well.

