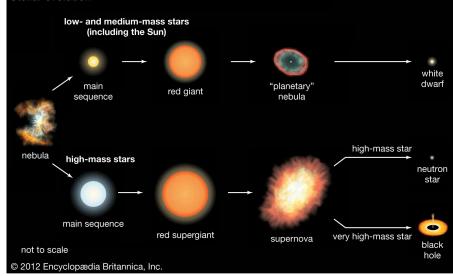
Binary nature of supernovae type Ic revealed by molecular gas observations of nearby galaxies

Michał Michałowski


/me-how me-how-off-skee/

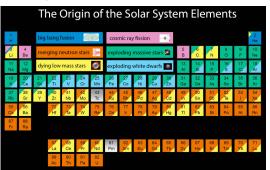
Astronomical Observatory Institute, Adam Mickiewicz University in Poznan

28.06.2023

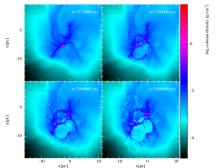
Observing the Universe at millimetre wavelengths, Grenoble

Stellar evolution

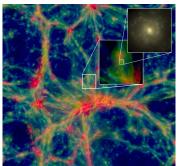
Supernova types

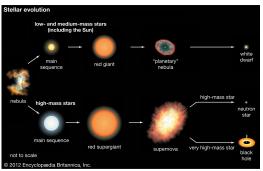

Thermonuclear SN

Thermonuclea


Supernovae type la

Supernovae type II Supernovae type Ib Supernovae type Ic


- To measure a fraction of metals produced by massive stars
- To determine how supernovae influence star formation through ionisation of gas
- These aspects need to be implemented by hand in numerical galaxy evolution simulations
- Understanding of the endpoints of massive stars is an important element of stellar evolution


- To measure a fraction of metals produced by massive stars
- To determine how supernovae influence star formation through ionisation of gas
- These aspects need to be implemented by hand in numerical galaxy evolution simulations
- Understanding of the endpoints of massive stars is an important element of stellar evolution

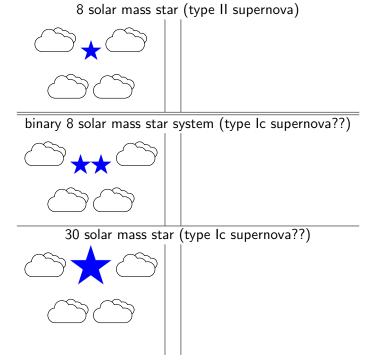
- To measure a fraction of metals produced by massive stars
- To determine how supernovae influence star formation through ionisation of gas
- These aspects need to be implemented by hand in numerical galaxy evolution simulations
- Understanding of the endpoints of massive stars is an important element of stellar evolution

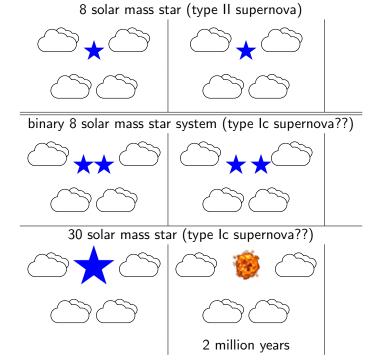
- To measure a fraction of metals produced by massive stars
- To determine how supernovae influence star formation through ionisation of gas
- These aspects need to be implemented by hand in numerical galaxy evolution simulations
- Understanding of the endpoints of massive stars is an important element of stellar evolution

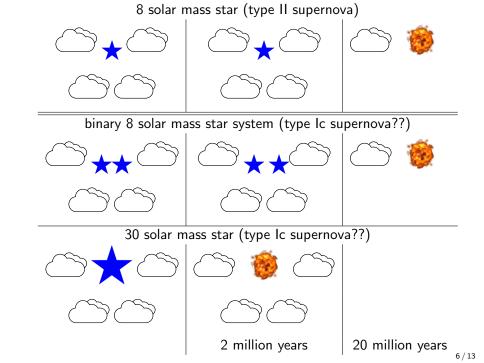
Main goals

supernova type	observational definition	physical model
II	hydrogen lines	8–10 Solar mass star 🕇

Goals


- Distinguish the very massive star and binary models for supernovae type Ib and Ic
- ② Determine the conditions necessary for their progenitors to be born


Main goals


supernova	observational	physical
type	definition	model
Ш	hydrogen lines	8–10 Solar mass star 🕇
lc	no hydrogen lines	binary 8–10 system??
	no helium lines	30 Solar mass star??

Goals


- Distinguish the very massive star and binary models for supernovae type Ib and Ic
- Oetermine the conditions necessary for their progenitors to be born

Resolution: ALMA

Matched to size of giant molecular clouds in which stars form

Data

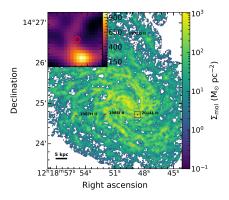
PHANGS

Physics at High Angular resolution in Nearby GalaxieS https://sites.google.com/view/phangs/home

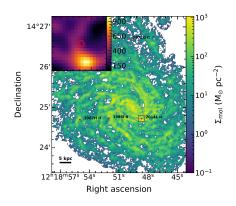
- 74 galaxies images by ALMA at 50-100 pc resolution
- 12 type Ia, 30 type II, and 5 type Ic
- ACOS ALMA CO SN survey
 - 16 type Ic SN host galaxies
 - 50-100 pc resolution

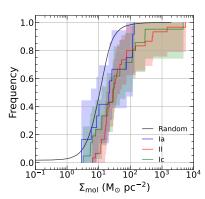
Data

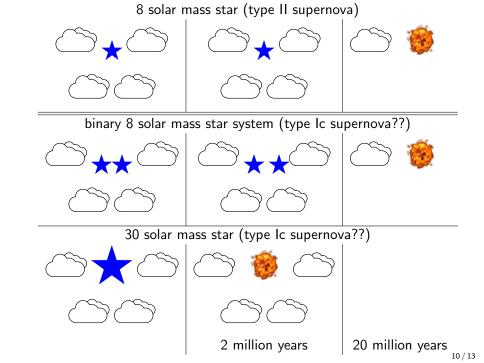
PHANGS


Physics at High Angular resolution in Nearby GalaxieS https://sites.google.com/view/phangs/home

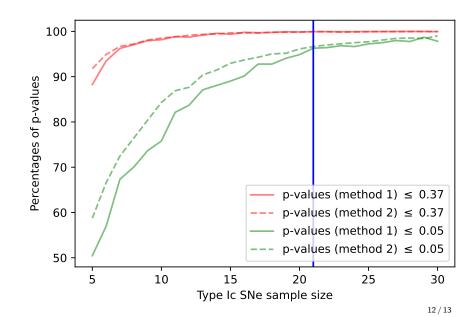
- 74 galaxies images by ALMA at 50-100 pc resolution
- 12 type Ia, 30 type II, and 5 type Ic
- ACOS


ALMA CO SN survey


- 16 type Ic SN host galaxies
- 50-100 pc resolution

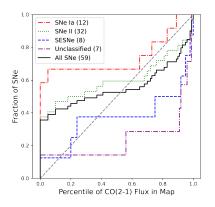

SN type Ic and II have similar molecular environments

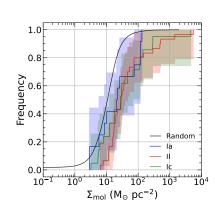
SN type Ic and II have similar molecular environments



Constraints on the properties of progenitors of SNe type Ic

- \bullet Lifetime difference between progenitors of type II and Ic SNe: $< 5\,\mathrm{Myr}$
- \bullet Confirmed type II progenitors masses: $11\,M_{\odot}$ and lifetimes: $25\,\mbox{Myr}$
- \bullet Hence, average type Ic progenitor masses: 10–12 M_{\odot} and lifetimes: 20–29 Myr


Statistical significance


Conclusions

- CO observations with a spatial scale of molecular clouds can constrain the SN progenitor nature
- ullet Type Ic progenitor masses: 10–12 ${
 m M}_{\odot}$
- Evidence for binary model of type Ic SNe
- This can be used to estimate their metal enrichment contribution and feedback
- Details in Solar et al. (submitted)

PHANGS collaboration results: sample size

Chen et al. (2023, ApJ, 944, 110)

