Towards Cosmology with the Projected-Fields kSZ estimator

Raagini Patki Cornell University

arXiv:2306.03127

with Nick Battaglia & Simone Ferraro

Outline

- Detecting the kSZ with Projected-fields
- Improved model for the Projected-fields estimator
- Cosmological dependence of the Projected-fields kSZ estimator
- Future Directions & Summary

The kinetic Sunyaev-Zel'dovich (kSZ) effect

→ Lowest order: Relative shift in blackbody $T_{\text{CMB}} \propto \mathbf{p_e} = (1 + \delta_e) \mathbf{v}_e$

- Dominates over primary CMB at: $\ell > \sim 4000$
- Equally likely ± ; maintains blackbody spectrum

Source: Mroczkowski+2019

The kSZ effect

$$\Theta^{\text{kSZ}}\left(\mathbf{\hat{n}}\right) = -\sigma_{\text{T}} \int \frac{d\eta}{1+z} e^{-\tau} n_{e}\left(\mathbf{\hat{n}},\eta\right) \mathbf{v_{e}}\left(\mathbf{\hat{n}},\eta\right) \cdot \mathbf{\hat{n}}.$$

→ Degeneracy: Astrophysics (gas density) × Cosmology (velocity)

Astrophysics:

- Abundance of baryons (z):
 → missing ?
- Distribution of baryons:
 - \rightarrow gas density profile

Cosmology:

- Peculiar velocities scales > RSD
- Linear theory & phenomenological: $\mathbf{v}(\mathbf{k}) = i \frac{f a H \delta(\mathbf{k})}{k} \hat{\mathbf{k}},$
 - → trace total matter density
 → growth rate of LSS

Detecting the kSZ: combine with LSS data

- *Cannot* isolate: by ILC, + reionization signal
- Statistical estimators:
- 1. <u>Pairwise kSZ</u>:
 - 1st kSZ detection in ACT+BOSS,
 - Planck, SPT, ACT-DR5, ..
- 2. <u>Velocity-weighted stacking:</u>
 - Planck, ACT, -DR5
- 3. <u>Velocity reconstruction</u>:
 - No measurements yet, probe for $f_{\rm NL}$

Sources: e.g. Hand+12, Vavagiakis+21, Soergel+16, Schaan+21, Amodeo+21, Munchmeyer+19, ..

Detecting the kSZ: combine with LSS data

- *Cannot* isolate: by ILC, + reionization signal
- Statistical estimators:

Ι.

Mathematically equivalent [Smith+18] &
 Key:
 Require accurate spectroscopic redshifts

Sources: e.g. Hand+12, Vavagiakis+21, Soergel+16, Schaan+21, Amodeo+21, Munchmeyer+19, ..

Projected-fields kSZ estimator

Projected-field of LSS tracers:
$$\delta_g(\mathbf{\hat{n}}) = \int_0^{\eta_{\text{max}}} d\eta \, W^g(\eta) \, \delta_m(\eta \mathbf{\hat{n}}, \eta)$$

 \rightarrow Does *not* need accurate redshifts: e.g. photometric galaxies, lensing, 21-cm, ..

Take a *cleaned* CMB map \rightarrow *filter* it to select *small* scales \rightarrow *square* it in real space \rightarrow before cross-correlating with LSS:

$$C_{\ell}^{\mathrm{kSZ}^{2} \times \delta_{g}} = \int_{0}^{\eta_{\mathrm{max}}} \frac{d\eta}{\eta^{2}} W^{g}(\eta) g^{2}(\eta) \mathcal{T}\left(j = \frac{\ell}{\eta}, \eta\right) \qquad \text{Dore+04, DeDeo+05}$$

$$\mathcal{T}(j,\eta) = \int \frac{d^{2}\mathbf{q}}{(2\pi)^{2}} f(q\eta) f(|\mathbf{j} + \mathbf{q}|\eta) B_{p_{\hat{\mathbf{n}}}p_{\hat{\mathbf{n}}}\delta}(\mathbf{q}, -\mathbf{j} - \mathbf{q}, \mathbf{j}).$$

Projected-fields estimator

- 1st measurement: [Hill+2016, Ferraro+2016] *Planck* data + WISE galaxies $\sim 3\sigma$
- 2nd measurement: [Kusiak+2021]
 Planck data + unWISE galaxies ~5σ
- Amplitude \rightarrow <u>baryon fraction</u>
- Forecasts for constraints on baryon density profile [Bolliet+2022]
- Thus: as a probe of astrophysics

Outline

- Detecting the kSZ with Projected-fields
- Improved model for the Projected-fields estimator
- Cosmological dependence of the Projected-fields kSZ estimator
- Future Directions & Summary

Existing Approximate Model for $B_{p_n p_n \delta}$

DeDeo+2005: Ansatz for high- ℓ limit of $C_{\ell}^{kSZ^2 \times \delta_g}$, only in its high- k_1, k_2, k_3 limit.

TABLE I. The ten terms in the Wick contraction of $\langle \underline{p}_{\perp} \underline{p}_{\perp} \delta \rangle \sim \langle \delta \mathbf{v} \delta \mathbf{v} \delta \rangle$ which contribute to $\underline{B}_{p_{\mathbf{\hat{n}}} p_{\mathbf{\hat{n}}} \delta}(\mathbf{k_1}, \mathbf{k_2}, \mathbf{k_3})$,

Issues:

- 1) Convolution
- 2) Squeezed triangles
- 3) Only applicable for astrophysics

Our Improved Model for $B_{p_n p_n \delta}$

The *first* rigorous derivation, accounting for <u>all</u> triangles

Numerical Evaluation:

- Fitting function for matter bispectrum:
- Speed-up using emulators

$$B_{\delta\delta\delta}(k_1, k_2, k_3) = \sum_{cyc} 2F_2(k_1, k_2, k_3) P_{\delta\delta}(k_1) P_{\delta\delta}(k_2)$$

Forecasts for surveys

- Assume *realistic* post-ILC noise models for: Simons Observatory (SO) & CMB-S4
- Photometric galaxies $-\Delta z = 0.1$ WISE: 50 million; z < 1VRO: ~ 4 billion; z < 3
- + include lensing contribution term
 [Ferraro+2016]

Wiener filters for CMB experiments

High-resolution CMB survey: SO

- Low statistical uncertainties \rightarrow enormous forecasted SNR: 110
- $\sim 15\%$ differences in predicted signal significant
- Scale-dependent \rightarrow impact shape \rightarrow *any* parameter inference

CMB-S4 × **WISE**

- Low statistical uncertainties \rightarrow enormous forecasted SNR: 130
- $\sim 15\%$ differences in predicted signal significant
- Scale-dependent \rightarrow impact shape \rightarrow *any* parameter inference

CMB-S4 × **VRO**

- Low statistical uncertainties \rightarrow enormous forecasted SNR: 180
- $\sim 15\%$ differences in predicted signal significant
- Scale-dependent \rightarrow impact shape \rightarrow *any* parameter inference

Outline

- Detecting the kSZ with Projected-fields
- Improved model for the Projected-fields estimator
- Cosmological dependence of the Projected-fields kSZ estimator
- Future Directions & Summary

Cosmological Dependence

- Improved model \rightarrow applicable beyond small-scales $\rightarrow \underline{\text{cosmology}}$
- Fisher formalism –

 $\boldsymbol{\theta}_{\min} = \{H_0, \Omega_b h^2, \Omega_c h^2, 10^9 A_s, n_s\} + \{A_{kSZ^2}, b_g\}$

• Assume: astrophysics ~known externally, with a flat prior on galaxy bias.

• $C_{\ell}^{\text{kSZ}^2 \times \delta_g} \propto \sigma_8^{6-7}$ \rightarrow very sensitive to $\Omega_c h^2$ and A_s

Cosmological Dependence

• <u>Fixed cosmology</u>: forecasted SNRs = 110, 130, 180

\rightarrow sub-% level uncertainty on kSZ amplitude

- Note: For CMB-S4×WISE, assuming *detector-only* noise, SNR = 345
- <u>Varying cosmology</u>: Marginalizing over ΛCDM parameters + *Planck* CMB prior

 \rightarrow ~ 7% uncertainty on kSZ amplitude

	$\% \Delta A_{\rm kSZ^2}$: 1 σ % uncertainty on $A_{\rm kSZ^2}$				
	$SO \times WISE$	$CMB-S4(ILC) \times WISE$	$CMB-S4(ILC) \times VRO$		
Fixed Cosmology	0.9	0.8	0.6		
Varying $\Lambda CDM + Planck$ prior	7.1	6.7	6.9		
Varying $\Lambda CDM + (low-\ell Planck+high-\ell CMB-S4)$ prior	5.9	5.6	5.9		
Varying $\Lambda CDM + (low-\ell LiteBIRD+high-\ell CMB-S4)$ prior	3.7	3.6	3.6		

Sensitivity of $C_{\ell}^{\mathrm{kSZ}^2 \times \delta_g}$ to Neutrinos

Illustration - potential probe of cosmology + fundamental physics

- Include $\Lambda CDM + \sum m_{\nu}$ in *initial* Fisher forecasts
- Why? Massive neutrinos imprint the LSS
- Effect of neutrinos:
- 1) Suppress the matter power spectrum

 \rightarrow At first order, matter bispectrum: ~ twice the suppression

2) Induce scale-dependence in growth rate of LSS \rightarrow velocities

$$f \equiv \frac{d \ln D(a)}{d \ln a}$$

Kiakotou+08

Raagini Patki

mm Universe 2023

 $\Sigma m_{
u}$

increasing

Parameter dependence: kSZ-only

CMB-S4×WISE > SO×WISE

CMB-S4×WISE vs CMB-S4×VRO: → much of signal comes from z < 0.5

Parameter constraints:

	$kSZ + Planck + 1\% b_g$ prior					
	$SO \times WISE$	CM	$B-S4(ILC) \times W$	ISE	$CMB-S4(ILC) \times VRO$	
$\sigma(\Sigma m_{\nu}) [\mathrm{meV}]$	168		100		254	

- Primary *Planck* priors on ΛCDM only, *realistic noise* in CMB maps.
- Forecasts with pairwise-kSZ: ~ 220 meV (Stage III) and 96 meV (Stage IV) Mueller+15
- <u>Idealistic scenario</u>: *detector-only noise* in CMB-S4 (×WISE) All errors improve, $\sigma(\Sigma m_{\nu}) = 38 \text{ meV} \rightarrow \text{Alternative cleaning methods possible}?$
- → kSZ as a complementary probe of neutrinos (and possibly other extensions) among other upcoming CMB+LSS probes: CMB lensing, BAO, shear, ...

Mishra-Sharma+2018, Dvorkin+2019

Outline

- Detecting the kSZ with Projected-fields
- Improved model for the Projected-fields estimator
- Cosmological dependence of the Projected-fields kSZ estimator
- Future Directions & Summary

Future Directions

• Incorporating our improved model within the Halo Model $class_sz$: [Bolliet+2022] \rightarrow include realistic baryon density profile

- Including non-linear galaxy bias determined externally,
 + accounting for effect of extensions
- Optimal redshift-weighting taking subsamples
- Faster computation for MCMC emulator framework?
 → Joint astrophysics + cosmology analyses in future

- Projected-fields kSZ estimator → does not need spectroscopic redshifts
- Our improved model → necessary to avoid biases in future measurements with SO, CMB-S4, ..
- Allows us to study the cosmological dependence of the signal,

Marginalized uncertainty on amplitude:

<u>sub-% $\rightarrow \sim 7\%$ with a *Planck* prior</u>

• Projected-fields kSZ: a complementary probe of cosmology

Backup Slides

mm Universe 2023 | Raagini Patki