

European Research Counc

mm-Universe conference - Wednesday, June 28th 2023

Towards cosmological parameters with SPT-3G TTTEEE - 19/20 CMB data Etienne Camphuis (Institut d'Astrophysique de Paris) Wei Quan (University of Chicago) with Silvia Galli, Karim Benabed and Eric Hivon (IAP) with SPT-3G collaboration

South Pole Telescope and SPT-3G instrument SPT by A. Choshki Sobrin et al. 2022

2

Kavli Institute at The University of Chicago

10-meter diameter telescope located at the South Pole in optimal conditions for millimeter wavelength observations

- SPT-3G: state-of-the art instrument with 3 frequencies 95, 150, 220 GHz
- Beam: 1.6'/1.2'/1.0' (*Planck*: 9.7/7.2/5.0') **High resolution**
- ~16k detectors: low noise-levels

Science goals

- Cosmological constraints from CMB primary anisotropies
- Clusters
- DES x SPT
- tSZ kSZ
- CMB lensing
- Delensing in the BICEP/Keck field
- High-l TT
- Low-l BB
- Spatially varying cosmic birefringence
- Axions

•

• Point sources, transients, asteroids, planet 9

SPT collaboration - July 2022

Courtesy: ESA/C Carreau ESA and the Planck Collaboration

CMB temperature anisotropies observed by Planck (SMICA)

CMB polarization anisotropies

m I

 $300 \ \mu K$

Goals of C Bsci Tensions a Unkowns

H_0 tension : ~5 σ

SPT-3G Winter field

- 4% sky = 1700 sq deg
- T@150GHz noise: • 15 µK-arcmin
- Lead to SPT's tightest CMB • cosmological constraints with most of the SPT constraining power from EE/TE. Adding TT breaks degeneracies and improves constraints of ΛCDM by ~10-30%

CMB power spectrum measurements

Λ CDM parameters with only TE/EE [Dutcher et al. 2021]

$$H_0 = 68.3 \pm 1.5$$
 km/s/Mpc
 $S_8 = 0.797 \pm 0.042$

 Λ CDM parameters with TT/TE/EE SPT-3G 2018 - [Balkenhol et al. 2022]

SPT-3G 2019-2023 baseline

SPT-3G Winter field

- Final noise @ T150GHz $2.6 \,\mu$ K-arcmin Planck @ T143GHz 40 µK-arcmin
- Final constraints on • cosmological parameters comparable to Planck from independent dataset

SPT-3G 5YR baseline forecasts

Auto frequency band powers

SPT-3G 19/20 baseline forecasts

SPT-3G Extended fields

Winter field in orange, summer fields in red

- Additional sky fraction +2800 deg2
- Noise (95/150/220GHz,pol): 18.2, 17.7, 62.4 μK-arcmin

- 15 to 20 % additional constraints on final ACDM parameters
- Even more for ACDM extensions, with up to 40% for $\Lambda CDM + N_{eff}$

Winter field in orange, summer fields in red

11

Pipeline improvements 2018 —> 2019-2020

• Flat sky —> curved sky

SPT-3G 2018 EE/TE covariance

.2

.4

1

$\begin{array}{l} \textbf{Pipeline improvements}\\ 2018 \longrightarrow 2019-2020 \end{array}$

- Flat sky —> curved sky
- Covariance matrix from simulations

 -> Fast and accurate analytical
 computation of the covariance [EC
 et al. 2022]

Pipeline improvements $2018 \longrightarrow 2019-2020$

- Flat sky —> curved sky
- Covariance matrix from simulations

 -> Fast and accurate analytical
 computation of the covariance [EC
 et al. 2022]
 - Precise
 - Modular
 - Corrected for instrumental effects and statistical anisotropies due to filtering

SPT-3G D_{ℓ} covariance $[\mu K^4]$

Pipeline improvements $2018 \longrightarrow 2019-2020$

- Flat sky —> curved sky
- Covariance matrix from simulations —> Fast and accurate analytical computation of the covariance **[EC** et al. 2022]
- ~170 sources masked —> ~2500 sources masked 2118 radio sources with flux > 6mJy 537 clusters with SNR > 10

T,Q,U [μK] 95 GHz T,Q,U [μK] 150 GHz T,Q,U [μK] 220 GHz

Pipeline improvements $2018 \longrightarrow 2019-2020$

- Flat sky —> curved sky
- Covariance matrix from simulations —> Fast and accurate analytical computation of the covariance **[EC** et al. 2022]
- ~170 sources masked —> ~2500 sources masked 2118 radio sources with flux > 6mJy 537 clusters with SNR > 10

T,Q,U [μK] 95 GHz T,Q,U [μK] 150 GHz T,Q,U [μK] 220 GHz

Pipeline improvements 2018 —> 2019-2020

- Flat sky —> curved sky
- Covariance matrix from simulations

 -> Fast and accurate analytical
 computation of the covariance [EC
 et al. 2022]
- ~170 sources masked —> ~2500 sources masked
 2118 radio sources with flux > 6mJy
 537 clusters with SNR > 10

Pipeline improvements $2018 \longrightarrow 2019-2020$

- Flat sky —> curved sky
- Covariance matrix from simulations —> Fast and accurate analytical computation of the covariance **[EC** et al. 2022]
- ~2500 sources are masked in the field **High precision Gaussian** 0.075 constrained realization of 0.050 $-\langle C_{l}^{i}\rangle]/\sigma_{l}^{i}$ 0.025 the CMB anisotropies 0.000 <u>(C</u>⁰ (<u>C</u>) −0.025 [EC, Benabed et al., in prep]

ΤE

2000

Perspectives

- Finalize null tests
- Ongoing likelihood implementation in JAX (differentiability)
- Run consistency checks
- Speed up MCMC chains as for SPT-3G 2018 with CosmoPower (Spurio Mancini et al. 2022)
- Blinded analysis
- Results coming soon !

SPT-3G 19/20 will put tight constraints on parameters

Conclusions

Significant improvements to the pipeline

High-precision CMB inpainting

[EC, Benabed, in prep]

Accurate CMB covariance matrices [EC et al. 2022]

$n_s \quad \Omega_b$ degeneracy in ACT results from Aiola et al. 2020

Noise levels and beams

Frequency	SPT-3G fwhm $[']$	Planck FWHM [']	ACT FWHM [']
$95 \mathrm{GHz}$	1.57	9.7	2.0
$150 \mathrm{GHz}$	1.17	7.2	1.3 to 1.46
$220 \mathrm{GHz}$	1.04	5.0	NA

Frequency	SPT-3G 19/20		SPT-3G 2018		Planck		ACT DR4	
requeitcy	TT	${ m EE}$	TT	EE	TT	EE	TT deep	TT wide (AA)
95GHz	5.4	8.1	20.9	29.6	77.4	118	> 18.4	72.9
$150 \mathrm{GHz}$	4.6	6.6	14.9	21.1	33	70	> 12.6	118.5
$220 \mathrm{GHz}$	16	23	53	75	46.8	105	NA	NA

Foregrounds From SPT-3G 2018 - Balkenhol et al. 2022

Temperature		
$A_{80}^{ m cirrus}$	$\mathcal{N}(1.88, 0.48) [1.93]$	Galactic cirrus amplitude
$lpha^{ m cirrus}$	$\mathcal{N}(-2.53, 0.05) \left[-2.53 ight]$	Galactic cirrus power law index
$eta^{ ext{cirrus}}$	$\mathcal{N}(1.48, 0.02) [1.48]$	Galactic cirrus spectral index
$D_{3000,95 imes95}^{ m Poisson,TT}$	$\mathcal{N}(51.3, 9.4) [62.61]$	TT Poisson power for $95\times95{\rm GHz}$
$D_{3000,95 imes150}^{ m Poisson,TT}$	$\mathcal{N}(22.4, 7.1) [27.9]$	TT Poisson power for $95\times150{\rm GHz}$
$D_{3000,95 imes 220}^{ m Poisson,TT}$	$\mathcal{N}(20.7, 5.9)[24.3]$	TT Poisson power for $95\times220{\rm GHz}$
$D_{3000,150 imes150}^{ m Poisson,TT}$	$\mathcal{N}(15.3, 4.1) [16.7]$	TT Poisson power for $150\times150{\rm GHz}$
$D_{3000,150 imes220}^{ m Poisson,TT}$	$\mathcal{N}(28.4, 4.2) [28.6]$	TT Poisson power for $150\times220{\rm GHz}$
$D_{3000,220 imes220}^{ m Poisson,TT}$	$\mathcal{N}(76.0, 14.9) [78.5]$	TT Poisson power for $220\times220{\rm GHz}$
$A_{80}^{\text{CIB-cl.}}$	$\mathcal{N}(3.2, 1.8) [5.2]$	CIB clustering amplitude
$\beta^{\text{CIB-cl.}}$	$\mathcal{N}(2.26, 0.38) [1.85]$	CIB clustering spectral index
A^{tSZ}	$\mathcal{N}(3.2, 2.4) [4.7]$	tSZ amplitude
ξ	$\mathcal{N}(0.18, 0.33) [0.09]$	tSZ-CIB correlation
A^{kSZ}	$\mathcal{N}(3.7, 4.6) [3.7]$	kSZ amplitude
Polarization		
$D^{\mathrm{Poisson, EE}}$	$\mathcal{N}(0.041, 0.012)[0.041]$	EE Poisson power for 95 \times 95 GHz

$D_{3000,95 imes95}^{ m Poisson, E\!E}$	$\mathcal{N}(0.041, 0.012) [0.041]$	$E\!E$ Poisson power for $95\times95{\rm GHz}$
$D_{3000,95 imes150}^{ m Poisson, E\!E}$	$\mathcal{N}(0.0180, 0.0054) [0.0177]$	$E\!E$ Poisson power for $95\times150{\rm GHz}$
$D_{3000,95 imes220}^{ m Poisson, E\!E}$	$\mathcal{N}(0.0157, 0.0047) [0.0157]$	$E\!E$ Poisson power for $95\times220{\rm GHz}$
$D^{ m Poisson, E\!E}_{3000, 150 imes 150}$	$\mathcal{N}(0.0115, 0.0034) [0.0115]$	$E\!E$ Poisson power for $150\times150{\rm GHz}$
$D^{ m Poisson, E\!E}_{3000, 150 imes 220}$	$\mathcal{N}(0.0190, 0.0057) [0.0188]$	$E\!E$ Poisson power for $150\times220{\rm GHz}$
$D^{ m Poisson, E\!E}_{3000, 220 imes 220}$	$\mathcal{N}(0.048, 0.014) [0.048]$	$E\!E$ Poisson power for $220\times220{\rm GHz}$
A_{80}^{TE}	$\mathcal{N}(0.120, 0.051) [0.138]$	TE amplitude of polarized galactic dust
$lpha_{TE}$	$\mathcal{N}(-2.42, 0.04) \left[-2.42 ight]$	$T\!E$ power law index of polarized galactic dust
eta_{TE}	$\mathcal{N}(1.51, 0.04) [1.51]$	TE spectral index of polarized galactic dust
A_{80}^{EE}	$\mathcal{N}(0.05, 0.022) \left[0.052 ight]$	$E\!E$ amplitude of polarized galactic dust
$lpha_{E\!E}$	$\mathcal{N}(-2.42, 0.04) \left[-2.42 ight]$	$E\!E$ power law index of polarized galactic dust
eta_{EE}	$\mathcal{N}(1.51, 0.04) [1.51]$	$E\!E$ spectral index of polarized galactic dust

Analytical covariance matrices for small footprints [EC et al. 2022]

- Implement the first exact 1. covariance code with a speed-up $\mathcal{O}(\ell_{\text{max}}^5)$
- 2. List existing analytical approximations of covariance and propose a new one
- Assert their precision against the 3. exact code

Relative difference of binned approximations vs exact computation

24

SPT-3G covariance

Applying our semi-analytical framework

- SPT-3G maps are **anisotropically** filtering. The analytical framework should fail
- We adapted the analytical 2. covariance framework to take into account those anisotropies, using a 1D correction [Hivon, Doussot et al. in prep] Plot: ratio of diagonals analytical framework over simulations

CMB temperature map with anisotropic filter

Ratio of diagonals : (Analytical covariance)/(Simulations with 2D filtering)

More about tensions

Results on tensions Hubble constant

 $H_0 = 68.3 \pm 1.5 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (SPT3G 2018) TTTEEE)

Consistent with Planck ($H_0 = 67.36 \pm 0.54 \text{ km s}^{-1} \text{ Mpc}^{-1}$) 2.8σ lower than Sh0es value Murakami+ 2023 $(H_0 = 73.29 \pm 0.9 \text{ km s}^{-1} \text{ Mpc}^{-1})$

Growth of structure

 $S_8 = 0.797 \pm 0.042$

Consistent with Planck ($S_8 = 0.832 \pm 0.013$) Consistent with weak lensing measurements e.g SPT-3G 2018 + Planck -KiDS+DES (0.790^{+0.018}-0.014)

Lensing amplitude (LCDM+Alens)

 $A_L = 0.87 \pm 0.11$ consistent with unity, contrary tc Planck which gives a 2-3 sigma excess (but erro are twice larger for SPT).

No deviations from LCDM

credits Silvia Galli

Foregrounds From SPT-3G 2018 - Balkenhol et al. 2022

$$\begin{split} & \left(D_{\ell,\nu\times\mu}^{\text{cirrus}} = A_{80}^{\text{cirrus}} \frac{g(\mu)g(\nu)}{g(\nu_0^{\text{cirrus}})^2} \left(\frac{\nu\mu}{(\nu_0^{\text{cirrus}})^2} \right)^{\beta^{\text{cirrus}}} \left(\frac{\ell}{80} \right)^{\alpha^{\text{cirrus}}+1} \right) \\ & D_{\ell,\nu\times\mu}^{\text{TT,Poisson}} = D_{3000,\nu\times\mu}^{\text{TT,Poisson}} \left(\frac{\ell}{3000} \right)^2 \quad \text{with varying} \left[D_{300}^{\text{TT}} \right) \\ & D_{\ell,\nu\times\mu}^{\text{CIB-cl.}} = A_{80}^{\text{CIB-cl.}} \frac{g(\mu)g(\nu)}{g(\nu_0^{\text{CIB-cl.}})^2} \left(\frac{\nu\mu}{(\nu_0^{\text{CIB-cl.}})^2} \right)^{\beta^{\text{CIB-cl.}}} \left(\frac{\ell}{80} \right)^{\alpha^{\text{cirrus}}+1} \\ & D_{\ell,\nu\times\mu}^{\text{tSZ}} = A_{80}^{\text{CIB-cl.}} \frac{g(\mu)g(\nu)}{g(\nu_0^{\text{CIB-cl.}})^2} \left(\frac{\nu\mu}{(\nu_0^{\text{CIB-cl.}})^2} \right)^{\beta^{\text{CIB-cl.}}} \left(\frac{\ell}{80} \right)^{\alpha^{\text{CIB-cl.}}} \\ & D_{\ell,\nu\times\mu}^{\text{tSZ}} = A^{\text{tSZ}} \frac{f(\nu)f(\mu)}{f(\nu_0^{\text{tSZ}})^2} D_{\ell}^{\text{tSZ,template}} \quad \text{with varying} \left[A^{\text{tSZ}} \right] \\ & D_{\ell,\nu\times\mu}^{\text{tSZ}-\text{CIB}} = -\xi \left(\sqrt{D_{\ell,\nu\times\nu}^{\text{tSZ}} D_{\ell,\nu\times\nu}^{\text{CIB-cl.}}} + \sqrt{D_{\ell,\mu\times\mu}^{\text{tSZ}} D_{\ell,\mu\times\mu}^{\text{CIB-cl.}}} \right) \\ & D_{\ell,\nu\times\mu}^{\text{tSZ}} = A^{\text{tSZ}} D_{\ell}^{\text{tSZ,template}} \quad \text{with varying} \left[A^{\text{tSZ}} \right] . \end{split}$$

2

with varying $\left[A_{80}^{\mathrm{cirrus}}, \beta^{\mathrm{cirrus}}, \alpha^{\mathrm{cirrus}}
ight],$

```
 \frac{\ell}{80} \Big)^{0.8}  with varying \left[A_{80}^{\text{CIB-cl.}}, \beta^{\text{CIB-cl.}}\right],
```

,

with varying $[\xi]$,

Reichardt et al. 2020

SPT-3G winter+summer footprints and Planck 30 GHz

Temperature

SPT-3G winter+summer footprints and Planck 353 GHz

 μK_{CMB}

2000

Polarization

 μK_{CMB}

500

-500

