mm Universe Conference, LPSC Grenoble, 28th June 2023

Primordial non-Gaussianity from the CIB-CMB lensing cross correlation

Fiona McCarthy

with Mathew Madhavacheril, Abhishek Maniyar arXiv:2210.01049

Cosmology with the CIB

- The Cosmic Infrared Background is the brightest extragalactic anisotropy source at frequencies >~300 GHz
- It is sourced by the thermal emission from grains of dust in distant galaxies
- Dust levels are highly correlated with star formation rate so the CIB emissivity peaks at redshifts $z \sim 2$ when the Universe's SFR was higher
- The CIB traces the galaxies sourcing the emission

Cosmology with the CIB

• The CIB intensity at frequency ν is

$$I_{\nu}(\hat{\boldsymbol{n}}) = \int_{0}^{\chi_{\text{re}}} d\chi a(\chi) j_{\nu}(z, \hat{\boldsymbol{n}})$$

 The CIB fluctuations trace the underlying galaxy fluctuations. The power spectrum of j_{ν} is modelled with a linear CIB bias (on large scales)

$$P_{jj}^{\nu\nu'}(k,z) =$$

• The angular power spectrum is then

$$C_{\ell}^{\nu\nu'} = \int \frac{d\chi}{\chi^2} a^2(\chi) \bar{j}_{\nu}(\chi)$$

 $\bar{j}_{\nu}(z) = \frac{\rho_{SFR}(z)(1+z)S_{\nu,\text{eff}}(z)\chi^2}{K}$

 $= b^{CIB}(z)^2 P^{\text{lin}}(k, z)$ Cosmology dependence

 $\chi)\bar{j}_{\nu'}(\chi)P_{jj}^{\nu\nu'}\left(k=\frac{\tau}{\gamma},z\right)$

The CIB redshift evolution

- This linear model was fit in Maniyar et al 2018 to CIB observations
- CIB galaxies are highly biased

Ζ

Z

The CIB redshift evolution

- This linear model was fit in Maniyar et al 2018 to CIB observations
- CIB galaxies are highly biased

Primordial non-Gaussianity: probing inflation

- Inflation seeded the Universe with the initial perturbations
- Different inflation models predict **different distributions of perturbations**, in particular different amounts and types of non-Gaussianity
- All tests are consistent with Gaussianity and single field, slow roll inflation
- Focus on **local** non-Gaussianity (f_{NL}^{loc}), multi-field inflation models a signal ($f_{NL}^{\text{loc}} \sim 1$) • From *Planck* bispectrum: $f_{NL}^{loc} = -0.9 \pm 5.1$

CMB map from Planck

- Galaxies are biased with respect to DM: $\delta^g = b\delta$
- Local primordial non-Gaussianity \rightarrow scale dependence of b on large scales [Dalal et al 2007]

$$b^{NG} = b^G + f_{NL}^{\text{loc}} \frac{1}{k^2} \frac{3\Omega_m H_0^2}{T(k)D(z)} \delta_c(b)$$

• This signal appears in the power spectrum on large scales

f_{NI} from scale-dependent bias

Plot from Boris Bolliet's talk: class_sz

- Scale dependence of the galaxy power spectrum is a major target for next-gen galaxy surveys
- Currently Boss quasars give $f_{NL}^{\text{loc}} = -12 \pm 21$ (Mueller et al 2021) (cf CMB bispectrum from *Planck*, $f_{NL}^{loc} = -0.9 \pm 5.1$)
- SphereX forecast: $\sigma(f_{NI}^{\text{loc}}) = 0.87$
- CIB objects have high bias -> high sensitivity to $f_{NL} (b^G + f_{NL}^{loc} \frac{1}{k^2} \frac{3\Omega_m H_0^2}{T(k)D(z)} \delta(b^G 1))$ Need to understand and measure the largest scales: this is a huge challenge

f_{NI} from galaxy power spectra

- galaxy surveys
- Currently Boss quasars give $f_{NL}^{\text{loc}} = -12 \pm 21$ (Mueller et al 2021) (cf CMB bispectrum from *Planck*, $f_{NL}^{loc} = -0.9 \pm 5.1$)
- SphereX forecast: $\sigma(f_{NI}^{\text{loc}}) = 0.87$

f_{NI} from galaxy power spectra

• Scale dependence of the galaxy power spectrum is a major target for next-gen

The large scale CIB maps

- Lenz et al 2019 created dust templates with HI emission data to create large scale galactic-dust-cleaned CIB maps
- CIB maps on up to 30% of the sky at 353, 545, 857 GHz from Planck data
- Various levels of clean maps were presented, with the cleanest on $\,\sim\,10\,\%$ of the sky and the dustiest on $\,\sim\,30\,\%\,$ of the sky

The CIB and galactic dust

- power spectra using Lenz et al CIB maps
- Any f_{NL}^{loc} analysis of the CIB auto power spectrum would need to marginalize over this effect
- Or, we can look at a probe that is not sensitive to this bias the cross correlation with **CMB** lensing

CIB-CMB lensing cross correlation

The CIB and CMB lensing kernels peak at similar redshifts

CIB-CMB lensing cross correlation

Planck CIB in red-blue contours)

• CMB lensing maps do not contain galactic dust

• The CIB is highly correlated with CMB lensing - see the amazing picture from Madhavacheril et al 2023: (ACT DR6 lensing map in grayscale,

CIB-CMB lensing cross correlation

No galactic dust in CMB lensing

• Measured cross-correlation of the Lenz+ CIB maps with Planck κ is unbiased

K

- We write a likelihood for $f_{NL}^{\rm loc}$ and marginalize over the 7 other CIB parameters; shot noise in the auto power spectra; and calibration factors for the frequency channels
- We use only the cross power on scales $70 < \ell < 400$ and also include the CIB power for $400 < \ell < 600$
- Lenz et al provide various maps with various levels of dust-cleaning (and sky areas). We perform the analysis separately on the four cleanest, where our fiducial model captures the variance in the auto power

f_{NT} analysis

t_{NT} constraints

- We combine all frequencies and analyses the different dust thresholds separately
- No detection of $f_{NL}^{\rm loc}$, $\sigma(f_{NL}^{\rm loc}) \sim 50$ from the largest map

- We are getting better lensing data!
- SO can get to $\sigma(f_{NI}^{\text{loc}}) \sim 23$
- CMBS4 can get to $\sigma(f_{NI}^{\rm loc}) \sim 20$
- Worth noting how much information there is in the CIB!

forecasts

Conclusions

- We can do cosmology with the CIB!
- $f_{NL}^{\rm loc}$ is a major goal for upcoming LSS surveys, with $\sigma(f_{NL}^{\rm loc})=1$ a target
- CMB lensing cross correlations can add a lot of robustness to autopower spectra with galactic systematics
- With current CIB data we get $\sigma(f_{NL}^{\rm loc}) \sim 50$ but this could improve
- Better dust-cleaning on large scales -> much better constraints