A "temperature inversion" estimator to detect the screening of the CMB by the large-scale structure

Maniyar Abhishek Sanjay KIPAC Stanford

In collaboration with: T. Schutt, E. Schaan, W. Coulton

mm Universe 2023 LPSC Grenoble 29th June 2023

Different imprints on the CMB due to the LSS

- Integrated Sachs-Wolfe & Rees-Sciama effect
 - Variation with time of the gravitational potential between us and the surface of last scattering
 - Dark energy, curvature of the Universe
- Lensing
 - Gravitational deflection of the CMB photons due to the LSS
 - Projected distribution of all the dark matter
- Scattering: Sunyaev–Zeldovich effect
 - Spectral distortion of the CMB through scattering by high-energy electrons in clusters
 - Distribution and properties of the gas in the Universe
 - Very important signal and foreground in cosmology and galaxy evolution
- Scattering: screening

Screening of the CMB photons

- CMB photons scattered in and out of the line of sight by e⁻ in the gas in galaxies and clusters
- Damping of the CMB anisotropies
- LOS with more e⁻ more suppressed and vice-versa
 - Damping is anisotropic
 - New CMB-anisotropies

Screening of the CMB photons

Brings the CMB temperature in a given patch close to the mean

$$\frac{\delta T_{\text{obs}}}{\bar{T}} = \frac{\delta T_{\text{true}}}{\bar{T}} (1 - \tau)$$

Why study screening?

- Contributions from two epochs
 - Reionization (sometimes also called patchy screening)
 - ▶ Patchy screening is a probe of reionization
 - Late-time Universe
- Linear in gas profile
 - Very useful to study distribution of the gas in the Universe
 - Calibrating baryonic effects: halo-baryon connection
- Combining with kSZ will allow to measure velocity field amplitude
 - Cosmological parameters like growth rate, $f_{\rm NL}$ etc.

How to measure this effect?

$$\frac{\delta T_{\rm obs}}{\bar{T}} = \frac{\delta T_{\rm true}}{\bar{T}} (1 - \tau)$$

$$\delta T_{\rm obs} = \delta T_{\rm true} - \nabla \phi \cdot \nabla \delta T_{\rm true} \longrightarrow \text{CMB lensing}$$

- Lensing causes mode coupling → Quadratic estimator (QE) (Hu, Okamoto 02)
- Screening causes mode coupling, like lensing → QE (Dvorkin Smith 09)

QE: large-scale τ limit

- Local power spectrum amplitude gives large-scale τ
- Foregrounds & lensing also modify the local power spectrum
 - → biases QE
 - → lensing & foreground hardening (Namikawa, Roy, Sherwin, Battaglia, Spergel 21)
- Currently quantifying biases and noise costs from hardening

QE: small-scale τ limit

Small-scale screening limit:

•
$$1 - \hat{\tau}^{QE}(x) \sim \delta T(x) \frac{T^{\log WF}(x)}{\langle T^{\log WF} 2 \rangle}$$

• "Temperature inversion" estimator analogous to "Gradient inversion" estimator (Horowitz, Ferraro, Sherwin 19, Hadzhiyska, Sherwin, Madhavacheril, Ferraro 19)

•
$$1 - \hat{\tau}^{TI}(x) \sim \frac{\delta T(x)}{T^{\log WF}(x)}$$

$$\frac{\delta T_{\text{obs}}}{\bar{T}} = \frac{\delta T_{\text{true}}}{\bar{T}} (1 - \tau)$$

Relationship between QE and TI

Small-scale screening limit:

•
$$1 - \hat{\tau}^{QE}(x) \sim \delta T(x) \frac{T^{\log WF}(x)}{\langle T^{\log WF} 2 \rangle}$$

•
$$1 - \hat{\tau}^{\text{TI}}(x) \sim \frac{\delta T(x)}{T^{\text{long WF}}(x)}$$

•
$$1 - \hat{\tau}^{QE}(x) = \left[1 - \hat{\tau}^{TI}(x)\right] \frac{T^{\log WF 2}(x)}{\langle T^{\log WF 2} \rangle}$$

- Small scale QE is unbiased
- However, irreducible statistical error even with arbitrarily small experimental noise
- TI, on the other hand, can have arbitrarily small error

TI: lensing & foreground biases

"Temperature inversion"

$$1 - \hat{\tau}^{\text{TI}}(x) \sim \frac{\delta T(x)}{T^{\text{long WF}}(x)}$$

- In cross-correlation with tracers:
 - Both insensitive to foregrounds due to the sign change if T^{long} is clean
 - Lensing from the tracers does not add bias nor noise
 - Lensing from other objects adds noise
 - Same conclusions hold for small scale approximate QE as well

Current work and next steps

- Implementing all estimators
- Forecasting & comparing SNR
- Checking lensing & foreground biases in cross-correlation
- Clarifying the relation between all estimators
- First ever detection of this effect with the **current** data

Screening quadratic estimator

$$\frac{\delta T_{\text{obs}}}{\bar{T}} = \frac{\delta T_{\text{true}}}{\bar{T}} (1 - \tau)$$

$$\hat{ au}_{m{L}}^{ ext{QE}} \equiv -rac{\int_{m{\ell}} rac{\left(C_{\ell}^0 + C_{|m{L} - m{\ell}|}^0
ight)}{C_{\ell}^{ ext{total}} C_{|m{L} - m{\ell}|}^{ ext{total}}} \, \delta T_{m{\ell}} \delta T_{m{L} - m{\ell}}}{\int_{m{\ell}} rac{\left(C_{\ell}^0 + C_{|m{L} - m{\ell}|}^0
ight)^2}{C_{\ell}^{ ext{total}} C_{|m{L} - m{\ell}|}^{ ext{total}}}$$

Roy, van Engelen, Gluscevic, Battaglia 22

Sunyaev-Zel'dovich effect

kinetic Sunyaev-Zel'dovich effect

