

Towards the first mean pressure profile estimate with the NIKA2 Sunyaev-Zeldovich Large Program

<u>Corentin Hanser</u>, Laurence Perotto

On behalf of the NIKA2 collaboration

mmUniverse 2023 conference

Outlines

1. Introduction 2. NIKA2 clusters' maps 3. From maps to clusters thermodynamical properties 4. Mean pressure profiles estimates on simulations

C. Hanser mmUniverse 2023

Cosmology with the SZ effect

Cluster number count

Cluster abundance in intervals of mass and redshift depends on cosmological parameters

SZ power spectrum

C. Hanser

Angular power spectrum of the SZ-map

Compton parameter map

Planck Collaboration XXII 2015

mmUniverse 2023

 $C_l^{tSZ} \sim \left[dz \left[dM \right] \frac{d^2 V}{dz d\Omega} \frac{dn}{dM} \left[y_l(M,z) \right]^2 \right]$

Volume : background cosmology

Halo mass function

\rightarrow Highly sensitive to cosmology

Holder et al., 2001

Model cluster SZ signal

Current mean pressure profile estimates don't cover the whole mass and/or redshift and/or angular scale range

The NIKA2 Sunyaev-Zel'dovich Large Program (LP-SZ)

IRAM 30m telescope and operating since 2017

C. Hanser mmUniverse 2023

The NIKA2 camera : Millimeter camera of 2900 Kinetic Inductance Detectors (KIDs) installed at the

Observing band	150 GHz	260 GHz
FWHM [arcsec]	17.6 ± 0.1	11.1 ± 0.2
Field of view [arcmin]	6.5	6.5

[Perotto et al. 2020]

- /15

mmUniverse 2023 C. Hanser

Precise characterization with NIKA2 high angular resolution of the mean pressure profile and SZ-M scaling relation with clusters at intermediate to high redshifts 0.5 < z < 0.9

(See L. Perotto's presentation)

 \rightarrow Precise estimation of hydrostatic masses

[Mayet et al. 2020] [Perotto et al. 2021]

High angular resolution follow-up of 38 Planck and ACT galaxy clusters

IRAM 30m telescope and operating since 2017

The NIKA2 Sunyaev-Zel'dovich Large Program (LP-SZ)

The NIKA2 camera : Millimeter camera of 2900 Kinetic Inductance Detectors (KIDs) installed at the

Observing band	1
FWHM [arcsec]	17
Field of view [arcmin]	
[Perotto et al. 2020]	

- → Synergy between NIKA2 and XMM-Newton

260 GHz 50 GHz 11.1 ± 0.2 7.6 ± 0.1 6.5 6.5

Objective 1 : Blind identification of problematics in individual observations

We suggest a list of criteria to define data quality \rightarrow Study the Time Ordered Data after decorrelation (removing the correlated noise due to the atmosphere and instrumental effects)

C. Hanser mmUniverse 2023

Objective 1 : Blind identification of problematics in individual observations

Before

C. Hanser

We suggest a list of criteria to define data quality \rightarrow Study the Time Ordered Data after decorrelation (removing the correlated noise due to the atmosphere and instrumental effects)

mmUniverse 2023

We suggest a list of criteria to define data quality \rightarrow Study the Time Ordered Data after decorrelation (removing the correlated noise due to the atmosphere and instrumental effects)

Before

C. Hanser

mmUniverse 2023

Remaining issues are efficiently detected \rightarrow allows to optimize the standard pipeline

150 GHz maps

Objective 1 : Blind identification of problematics in individual observations

We suggest a list of criteria to define data quality \rightarrow Study the Time Ordered Data after decorrelation (removing the correlated noise due to the atmosphere and instrumental effects)

Before

C. Hanser

mmUniverse 2023

Remaining issues are efficiently detected \rightarrow allows to optimize the standard pipeline

Noise maps

Objective 1 : Blind identification of problematics in individual observations

Objective 1 : Blind identification of problematics in individual observations

Before

C. Hanser

Objective 2 : Robustness checks against systematic effects \rightarrow perform null-tests as a function of the data quality score

We suggest a list of criteria to define data quality \rightarrow Study the Time Ordered Data after decorrelation (removing the correlated noise due to the atmosphere and instrumental effects)

Remaining issues are efficiently detected \rightarrow allows to optimize the standard pipeline

mmUniverse 2023

NIKA2 150 GHz maps

Status of the LP-SZ

(see L. Perotto's presentation)

On-going study on a sub-sample of 20 clusters

Study the systematics affecting the pressure and mass profiles reconstruction

> Analysis already performed and published

Ruppin et al. 2018 Keruzore et al. 2020 Muñoz-Echeverría et al. 2023

High signal to noise measurements

 \rightarrow Diversity of morphologies \rightarrow Point sources contamination

C. Hanser mmUniverse 2023

Individual pressure profile estimate

NIKA2 150 GHz map = SZ signal + point sources + correlated noise LPSZ version of the PANCO2 public software (see F. Kéruzoré's presentation)

SZ signal Spherical symmetry : 3D pressure profile gNFW model : $P_e(r) = P_0 \left(\frac{r}{r_p}\right)^{-c} \left[1 + \left(\frac{r}{r_p}\right)^a\right]^{\frac{c}{r_p}}$ Nagai et al. 2007 $-> 5 \text{ parameters} : P_0, r_p, a, b, c$ Binned model : $P_e(r_i < r < r_{i+1}) = P_i\left(\frac{r}{r_i}\right)^{\omega_i}$ -> 6 parameters : $P_0, P_1, P_2, P_3, P_4, P_5$

Points sources

C. Hanser

Flux : free parameter in the MCMC

Individual pressure profile estimate

NIKA2 150 GHz map = SZ signal + point sources + correlated noise LPSZ version of the PANCO2 public software (see F. Kéruzoré's presentation)

SZ signal Spherical symmetry : 3D pressure profile gNFW model : Nagai et al. 2007 $-> 5 \text{ parameters} : P_0, r_p, a, b, c$ $P_e(r_i < r < r_{i+1}) = P_i\left(\frac{r}{r_i}\right)$ Binned model : -> 6 parameters : $P_0, P_1, P_2, P_3, P_4, P_5$

Points sources

C. Hanser

Flux : free parameter in the MCMC

Forward modelling Integrate along the line of sight : $D_{th} \propto \int_{los} P_e(r) dr$

Convolved by the NIKA2 instrumental response

Individual pressure profile estimate

NIKA2 150 GHz map = SZ signal + point sources + correlated noise LPSZ version of the PANCO2 public software (see F. Kéruzoré's presentation)

mmUniverse 2023 C. Hanser

Integrate along the line of sight : $D_{th} \propto \int_{los} P_e(r) dr$

Convolved by the NIKA2 instrumental response

Results obtained on a simulation (see A. Moyer's presentation) \rightarrow Realistic LPSZ clusters simulation drawn from a spherical gNFW model (correlated noise + NIKA2 instrumental response)

Radius r

 10^{3}

Results obtained on a simulation (see A. Moyer's presentation) \rightarrow Realistic LPSZ clusters simulation drawn from a spherical gNFW model (correlated noise + NIKA2 instrumental response)

C. Hanser

Results obtained on a simulation (see A. Moyer's presentation) \rightarrow Realistic LPSZ clusters simulation drawn from a spherical gNFW model (correlated noise + NIKA2 instrumental response)

mmUniverse 2023 C. Hanser

$$\frac{4}{3}\pi R_{500}^3$$

mmUniverse 2023 C. Hanser

First measurement of the pressure profiles on a NIKA2-LPSZ sub sample

• gNFW fit on data

We have designed a first standard analysis pipeline

 \rightarrow On-going studies on the systematics affecting the profiles reconstruction (point sources, model, ...)

Pressure profiles of the NIKA2-LPSZ sub-sample

Self similar approach

Standard self-similar model (based on gravitation, Kaiser et al. 1986) : • Galaxy clusters are scaled versions of one another • We can get normalized thermodynamical quantities \rightarrow rescaled pressure profile p

 $P(r) = P_{500} p(\frac{r}{R_{500}}), \ P_{500} \propto M_{500}^{2/3}$

Self similar approach

Standard self-similar model (based on gravitation, Kaiser et al. 1986) : • Galaxy clusters are scaled versions of one another • We can get normalized thermodynamical quantities \rightarrow rescaled pressure profile p

C. Hanser

 $P(r) = P_{500} p(\frac{r}{R_{500}}), P_{500} \propto M_{500}^{2/3}$

mmUniverse 2023

Mean pressure profile estimates

gNFW model

• 1st approach : Take the median of the re-scaled profiles • 2nd approach : Compute the best-fitting model θ for the mean profile using the posterior distribution $P(\theta \mid d_i)$ of the individual fit of each cluster d_i

with $\theta = \{p_0, c_{500}, \alpha, \beta, \gamma\} = \{P_0/P_{500}, R_{500}/r_p, \alpha, \beta, \gamma\}$

Mean pressure profile estimates

gNFW model

- $P(\theta \mid d_i)$ of the individual fit of each cluster d_i

 $\rightarrow \text{We get } P(\theta \mid d_i)$

C. Hanser

• 1st approach : Take the median of the re-scaled profiles • 2nd approach : Compute the best-fitting model θ for the mean profile using the posterior distribution

Account for the error on R_{500} , P_{500} for each cluster: \rightarrow We compute the corresponding re-scaled parameters

with $\theta = \{p_0, c_{500}, \alpha, \beta, \gamma\} = \{P_0/P_{500}, R_{500}/r_p, \alpha, \beta, \gamma\}$

\rightarrow We compute $R_{500}^j P_{500}^j$ for each set of parameters $\{P_0, r_p, \alpha, \beta, \gamma\}^j$ in the MCMC chains

Mean pressure profile estimates

gNFW model

- $P(\theta \mid d_i)$ of the individual fit of each cluster d_i

 $\rightarrow \text{We get } P(\theta \mid d_i)$

Problematic : we don't know for any arbitrary set of parameters θ the exact value of $P(\theta \mid d_i)$ \rightarrow Very difficult to extrapolate

mmUniverse 2023 C. Hanser

 1st approach : Take the median of the re-scaled profiles • 2nd approach : Compute the best-fitting model θ for the mean profile using the posterior distribution

Account for the error on R_{500} , P_{500} for each cluster: \rightarrow We compute $R_{500}^{j}P_{500}^{j}$ for each set of parameters $\{P_{0}, r_{p}, \alpha, \beta, \gamma\}^{j}$ in the MCMC chains \rightarrow We compute the corresponding re-scaled parameters

with $\theta = \{p_0, c_{500}, \alpha, \beta, \gamma\} = \{P_0/P_{500}, R_{500}/r_p, \alpha, \beta, \gamma\}$

Idea

-> We approximate $P(\theta | d_i)$ for any arbitrary θ

C. Hanser mmUniverse 2023

Consider posteriors as multivariate gaussians : $P(\theta | d_i) \approx \frac{1}{\sqrt{(2\pi)^k \det \Sigma_i}} \exp\left(-\frac{1}{2}(\theta - \mu_i)^T \Sigma_i^{-1}(\theta - \mu_i)\right)$

gNFW model: 2nd approach

Idea

\rightarrow We approximate $P(\theta | d_i)$ for any arbitrary θ

C. Hanser mmUniverse 2023

True posterior (from data)

Consider posteriors as multivariate gaussians : $P(\theta | d_i) \approx \frac{1}{\sqrt{(2\pi)^k \det \Sigma_i}} \exp\left(-\frac{1}{2}(\theta - \mu_i)^T \Sigma_i^{-1}(\theta - \mu_i)\right)$

gNFW model : $\theta = \{p_0, c_{500}, \alpha, \beta, \gamma\}$

Good approximation of the posterior for all clusters

Results on simulations

Corner plot with all clusters' posteriors and the joint fit

The input mean pressure profile parameters are recovered within 2σ Small bias along the known $p_0 - \gamma$ degeneracy (Nagai et al. 2007)

C. Hanser mmUniverse 2023

Mean pressure profile

Results obtained with the 2 gNFW methods on simulations (no intrinsic dispersion)

mmUniverse 2023 C. Hanser

Conclusion

Study the systematics affecting the pressure and mass profiles reconstruction

Mean pressure profile estimate

We explore various methods to estimate the mean pressure profile \rightarrow New method that use all individual information and propagate errors from integrated quantities

We have a first complete LPSZ standard pipeline from the raw NIKA2 data to the mean pressure profile that will be used on data

Forthcoming results

 \rightarrow Deliver the first mean pressure profile using the NIKA2-LPSZ clusters

 \rightarrow Study the implications on tSZ power spectrum cosmology (using CLASS_SZ, B. Bolliet et al. 2018)

→ Validation using LPSZ realistic simulations

• Characterisation of the data quality : sanity checks • Robustness tests using various models of the pressure profile

First standard analysis on a NIKA2 LP-SZ sub-sample

C. Hanser mmUniverse 2023

Back-ups

Chosen criteria

Kid to kid correlation matrix : mean of the residual correlation Low frequency noise at large scales f_{knee}^{α} White noise at every scales BIntegrated signal over a sphere of radius R = 30'' on the map NEFD : Noise equivalent flux density

mmUniverse 2023

Low frequency noise

Method : compute the noise power spectrum of each TOI after decorrelation Model : Low frequency + White noise

$$P(f) = B^2 \left(1 + \frac{f_i}{f_i} \right)$$

3 parameters : B, f_{knee}, α

Fit : iMinuit library

-> Binning choice : linear or logarithmic

 f^{α}_{knee} Criteria : -B

mmUniverse 2023 C. Hanser

-> We bin the power spectrum : $P_{data}(f_i) = med(P_{data}(f)_{bin_i})$ $\sigma_{P_i} = mad(P_{data}(f)_{bin_i})$

Low frequency noise at large scales White noise at every scales

Power spectrum of one TOI from one KID (blue) and associated fit (yellow)

Corner plot mean pressure profile (simulations)

C. Hanser

mmUniverse 2023

Corner plot mean pressure profile : gamma fixed

C. Hanser

mmUniverse 2023

α

β